• Title/Summary/Keyword: sound level

Search Result 1,801, Processing Time 0.029 seconds

Vibro-acoustic analysis of un-baffled curved composite panels with experimental validation

  • Sharma, Nitin;Mahapatra, Trupti R.;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.93-107
    • /
    • 2017
  • The article presents the vibration and acoustic responses of un-baffled doubly curved laminated composite panel structure under the excitation of a harmonic point load. The structural responses are obtained using a simulation model via ANSYS including the effect various geometries (cylindrical, elliptical, spherical and hyperboloid). Initially, the model has been established by solving adequate number of available examples to show the convergence and comparison behaviour of the natural frequencies. Further, the acoustic responses are obtained using an indirect boundary element approach for the coupled fluid-structure analysis in LMS Virtual.lab by importing the natural frequency values. Subsequently, the values for the sound power level are computed using the present numerical model and compared with that of the available published results and in-house experimentally obtained data. Further, the acoustic responses (mean-square velocity, radiation efficiency and sound power level) of the doubly curved layered structures are evaluated using the current simulation model via several numerical experimentations for different structural parameters and corresponding discussions are provided in detail.

The Sound Quality Analysis of Environmental noise by Jury Testing (주관평가 방법에 의한 환경소음 음질평가)

  • 조경숙;허덕재;조연
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.712-717
    • /
    • 2004
  • Recently, the concern for the environmental noise has increased due to the growing of the living standard. The environmental noise regulations based on the equivalent noise level are widely used. However, the noise level, which Is based mainly on the magnitude with A-weighting, the important characteristics of noises in frequency and time domains and the impulsive nature cannot be assessed properly. These can have substantial effects on how human respond to noise. Therefore, the noise evaluation methodology based on the sound quality rather than the equivalent noise level can be more suitable to represent human response to the environmental noise. This paper describes the study on environmental noise quality analysis for various noises. A cluster analysis was carried out and the noises were classified into several clusters using the values of sound quality metrics. The classification was confirmed by comparing time and frequency characteristics of the noises. And then the result of Jury testing was analysis.

  • PDF

Tendency of Calibration and Test for Acoustic Field in KRISS (KRISS 에서 수행된 음향관련 교정 및 시험 검사 동향)

  • Suh, Jae-Gap;Jung, Sung-Soo;Jho, Moon-Jae;Suh, Sang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1767-1771
    • /
    • 2000
  • We report the number of calibration and test for acoustic field which were conducted in KRISS between the year of 1990 and 1999. The items contain sound level meter and calibrator for calibration and sound absorption coefficient, transmission loss, sound pressure level of siren, sound pressure level and power of acoustic instrument and relative accessories for test. The data show that the number of them have been increased continuously.

  • PDF

A Study on Elementary School Teachers' Understanding of, Certainty in, and Familiarity with Wave Concepts in Textbook and Teacher's Guidebook (교과서와 교사용 지도서에 제시된 소리의 성질 단원의 파동개념에 대한 초등 교사들의 이해도, 확신도와 친숙도 분석)

  • Jeong, Jaehun;Lee, Jiwon;Kim, Jung Bog
    • Journal of Korean Elementary Science Education
    • /
    • v.35 no.4
    • /
    • pp.389-405
    • /
    • 2016
  • The purpose of this study was to analyze elementary school teachers' understanding, certainty, and familiarity with 13 key concepts of wave physics that are presented in textbook and teacher's guidebook. 123 elementary school teachers answered concept tests and questionnaires. In the results to these tests and questionnaires, teachers demonstrated a high level of understanding and high certainty in understanding with regard to the concepts of sound generation, effect of medium on wave, timbre, wavelength, and trough and crest of wave. For the topics of sound velocity, wave reflection and wave transmission, teachers demonstrated a high level of understanding but low certainty in understanding. With regard to sound propagation, teachers demonstrated a low level of understanding and an improperly high certainty in that low understanding. Teachers lacked knowledge, i.e., displayed a low level of understanding and low certainty in sound strength, sound frequency, constructive interference and destructive interference. In constructive and destructive interference, the teachers also displayed a low level of familiarity. We analyzed the differences in teacher's understanding, certainty, and familiarity according to teacher demographics defined by the teacher's gender, teaching experience with concepts of sound, career, curriculum track while in high school, and major in university. There were no significant differences in understanding, certainty, or familiarity as defined by gender, teaching experience, and career. However, these displays of knowledge were affected by the teacher's curriculum track in high school and their major. These results suggest that the teacher's understanding of, familiarity with, and certainty in wave physics concepts are more influenced by their learning experience than by their teaching experience. Therefore, we suggest additional learning opportunities for teachers (such as teacher training programs) in order to improve teacher knowledge and correct teacher misconceptions in wave physics.

Effect of the Inter-aural Level Differences on the Speech Intelligibility Depending on the Room Absorption in Classrooms (실내 흡음에 따른 양이간 음량차가 강의실의 음성명료도에 미치는 영향)

  • Park, Chan-Jae;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.335-345
    • /
    • 2013
  • The present study investigates the effect of the inter-aural level difference(ILD) on the syllable articulation test in classrooms which can be occurred by the absorption of interior surfaces. In order to do this, the sound absorbing materials were installed in the classroom and sound pressure level(SPL) at each ear was measured using binaural recording systems. Also, syllable articulation tests were carried out at a classroom with and without sound absorption materials by 20 students who have normal hearing condition, in order to investigates the effect of the ILD on the speech intelligibility. As a result, it was found that the larger inter-aural level differences was occurred at the nearer positions to lateral walls after sound absorptions were applied to lateral walls in the classroom. At some places, the measured ILD was lager than JND of sound level (3dB). Also, it was shown that the correlation coefficient of inter-aural level difference with the score of syllable test has the significant result(-0.441). Thus, It is concluded that ILD can affect the subjective speech intelligibility in classrooms.

Estimation of Noise Level near Cross Bow Fan by Measurements of Static Pressure. (정압을 이용한 직교류팬 주변의 소음 예측)

  • Kim, Jae-Won;Cho, Yong;Jung, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1156-1161
    • /
    • 2001
  • A significant trial has been performed for estimation of noise level of a cross flow fan for air conditioning system. In general, measurements of noise level of machinery require rigorous equipment involving an anechoic chamber with precision gauges. The apparatus is expensive to utilize and is not easy to construct. In this work, we adopt static pressure sensing from an ordinary pressure transducer for prediction of noise level of a rotating fan. The present procedure is finding sound pressure from the static pressure by manipulating Light-Curle equation depicts noisy energy in terms of pressure on surfaces of noise generators. Sound power level near core unit of the fan is evaluated with the present methodology in a normal laboratory room without any sound absorbers. The method is easy and shows good prediction results compared with precise measurements by using microphones.

  • PDF

The Underwater Propagation of the Noise of Ship's Engine (기관소음의 수중전파에 관한 연구)

  • 박중희
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.16 no.2
    • /
    • pp.69-76
    • /
    • 1980
  • This paper describes the measurement of the underwater noises produced by the engine vibration around the engine room of stern trawler MIS Sae-Ba-Da(2275GT, 3,600 PS) and pole kner M/S Kwan-Ak-San (243 GT, 1000 PS) while the ship is stopping. The underwater noise pressure level was measured with the underwater level meter of which measuring range is 100 to 200 dB(re bLPa). A and B denotes the maximum pressure level measured at right beneath the bottom of the engine room, while the main engine of the Sae-Ba-Da revoluted at 750 and 500 rpm, respectively. C denotes that of the main engine of the Kwan-Ak-San revoluted at 350 rpm, and D that of the generator of the Sae-Ba-Da revoluted at 720 rpm. Thus A, B, C and D were set for the standard sound source for the experiment. The results obtained are as follows: 1. The noise Pressure level at A, B, C and D were 170.5,165,153 and 158dB, respectively. 2. When the check points distanted vertically 1, 10, 20, 30, 40, 50m from the sound source, the underwater noise presure levels were 170.5, 155, 148, 144 and 138 dB and the directional angle was 116\ulcorner in case of A. 3. The sound level attenuated at the rate of 20dB per 10" meters of the horizontal distance from the sound sources. 4. The frequency distribution of the noise was 100Hz to 10KHz and predominant frequency was 700 to 800Hzminant frequency was 700 to 800Hz

  • PDF

Harmonic Noise Evaluation Method for Home Appliance based on Sensory Evaluation (소비자 감성 평가에 의한 고조파 소음의 평가 방법)

  • Lee, Jin-Kyung;Jeoung, Jeoung-Kyo;Lee, Jea-Won;Joo, Jae-Man
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.439-442
    • /
    • 2005
  • Generally, noise from a home appliance has been measured by overall sound pressure level or sound power level, dB. Customers evaluation, however, of this noise should be depend on the only overall level but also the sensory feeling, annoyance, unpleasure and so on. Moreover, in this sensory evaluation, irregular, time-varying and uneven sounds which are difficult to describe itself by overall level are more affectable. Unfortunately however the formal evaluation method for this kinds of noise is not determined yet. In this research, the evaluation method for harmonic noise, which is a major noise from home appliance and one of the unmeasurable sounds by overall level, is proposed to evaluate its acceptability based on the consumer's sense of hearing. The proposed approach could be applied to the other sound, which acoustical characteristics are similar to the tonal noise.

  • PDF

Calculation of transmission loss design values of a high speed train wall by acoustic analysis of exterior sound field (외부음장해석에 의한 고속전철 벽면에서의 투과손실 목표치 계산)

  • 김관주;유남식
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.249-256
    • /
    • 1998
  • Design target values of transmission loss in a high-speed train wall are suggested by calculating the difference between interior and exterior noise levels of it. Exterior noise level distribution on the boundary of train wall is calculated by Sysnoise, with sound source input prepared by experiments. Two kinds of exterior sound sources are considered, the rolling noise of train wheels on the rail and the aerodynamic noise from the pantograph. Interior noise level is provided by high-speed design target. Transmission loss characteristics according to the frequency band are examined.

  • PDF

Ground-to-air transmitted sound from shallow earthquakes

  • 이병호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.3-8
    • /
    • 1984
  • By one dimensional acoustic transmission from ground to air, the author has derived the level of sound caused by earthquakes. He has also tried to assign proper values of ground acceleration to the modified mercalli intensity scale and thence earthquake sound level to the intensity scale has been deduced as L\sub M/ = 79.6+6.0M, dB, where M is the earthquake magnitude in the modified Mercalli intensity scale.

  • PDF