• Title/Summary/Keyword: sound absorption properties

Search Result 121, Processing Time 0.022 seconds

A Study on the Acoustic Properties of Porous Material by Using Acoustic Transfer Matrix (전달행렬법에 의한 다공질 흡음재의 음향특성 연구)

  • 박철희;주재만;염창훈
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.635-644
    • /
    • 1996
  • In this paper, Allard's modelling method which employs the method of acoustic transfer matrix(ATM) is applied to yield more precise results in the analysis of porous sound absorbing material. The method of ATM, based on Biot's theory, is known to play an important role in the estimation of the sound absorption when a sound projects onto the material. In the case of a single layered porous sound absorbing material, the surface impedance and the absorption coefficient by using the method of ATM are estimated. With the variation of the material properties, sound absorption characteristics and analyzed. Transmission Loss in a combination of the porous sound absorbing material with a thin plate is predicted.

  • PDF

Peanut Shells as an Environmentally Beneficial Sound-Absorbing Material

  • JANG, Eun-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.179-185
    • /
    • 2022
  • This study investigated the prospect of using peanut shells as an alternative and green sound-absorbing material. The sound-absorption coefficients were determined after filling impedance tubes of 30, 60, and 90 mm in height with peanut shells. The sound-absorption ability increased as the filling height increased, showing noise reduction coefficient (NRCs) of 0.23, 0.43, and 0.54 for the 30-, 60-, and 90-mm heights, respectively. In addition, for sounds greater than 2,000 Hz, the average sound-absorption coefficient of peanut shells in the 60- and 90-mm heights was 0.9. In summary, peanut shells were found to have good sound-absorption properties comparable to or better than those of bamboo, sisal, jute, and wool, and this research suggests that peanut shells may be useful as an environmentally friendly sound-absorbing material.

A Study on the Sound Absorption Properties of Foamed Concrete According to Dilution Ratio of Foaming Agent (기포제 희석비율에 따른 기포콘크리트의 흡음특성에 관한 연구)

  • Kang Ki-Woong;Kang Chul;Kim Ha-Seok;Kwag Eun-Gu;Kwon Ki-Joo;Kim Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.5-8
    • /
    • 2005
  • Sound absorbing performance is affected by porosity and continuity of void, therefore it is important to maintain stabilization of foam and to analyze properties of void pore in hardened state. The purpose of this study is to analyze the sound absorption properties and void characteristic of foamed concrete according to dilution ratio of foaming agent. The results of this experiment were as follows. It is determined that an increase in total and continuous void ratio is achieved by increasing of dilution ratio, and a shorter absorbing time was exhibited at a higher continuous void ratio. When the average void size of foamed concrete was below 1.5mm, the tendency of sound absorption coefficient compared with general sound absorber was appeared similarly.

  • PDF

Effects of Material Properties on Optimal Configuration Design of Absorbing Porous Materials (흡음을 위한 다공성 물질의 최적형상설계에서 물성치의 영향)

  • Lee, Joong-Seok;Kim, Yoon-Young;Kang, Yeon-June
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.622-624
    • /
    • 2008
  • This investigation studies the effects of material properties and corresponding propagation wave types on optimal configurations of sound absorbing porous materials in maximizing the absorption performance by topology optimization. The acoustic behavior of porous materials is characterized by their material properties which determine motions of the frame and the air. When the frame has a motion, two types of compressional wave propagate in the porous material. Because each wave in the material make different influence on the absorption performance, it is important to understand the relative contribution of each wave to the sound absorption. The relative contribution of the propagating waves in a porous material is determined by the material properties, therefore, an optimal configuration of a porous material to maximize the absorption performance is apparently affected by the material properties. In fact, virtually different optimal configurations were obtained for absorption coefficient maximization when the topology optimization method developed by the authors was applied to porous materials having different material properties. In this investigation, some preliminary results to explain the findings are presented. Although several factors should be considered, the present investigation is focused on the effects of the material properties and corresponding propagation waves on the optimized configurations.

  • PDF

Mechanical Properties and Sound Absorption Capability of Shipbuilding Plywood Waste (조선산업 폐합판의 강도적 성질과 흡음성능)

  • Kang, Chun-Won;Kim, Gwang-Chul;Park, Hee-Jun;Kang, Wook
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.457-462
    • /
    • 2010
  • Sound absorption capability and bending strength of laminated ship-building plywood waste of maple and melanti wood were estimated. Sound absorption coefficients of wood had been measured by the two microphone transfer function method and bending strength examined by three point loading. The maximum strength in bending of laminated ship-building plywood waste of maple and melanti wood were 534 and 414 kgf/$cm^2$, respectively. The sound absorption coefficients of laminated ship-building plywood waste were higher than mongolian oak and fiber board, well used construction material. Especially, in the case of laminated ship-building plywood waste of melanti wood, average sound absorption coefficient was about 0.25. It was surmised that the laminated ship-building plywood waste can be used as interior materials because of its good mechanical and sound absorption properties.

Acoustical Properties of Steel-Wire Sound Absorbing Materials (금속와이어 흡음재의 음향특성)

  • Lee, Seung;Park, Sang-Jun;Lee, Dong-Hoon;Phae, Chae-Gun;Kim, Min-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1341-1346
    • /
    • 2001
  • In this study, the acoustic properties of steel-wire sound absorbing materials with different thickness and bulk density were investigated in terms of characteristic impedance, propagation constant, and absorption coefficient. The well-known two-cavity method was used for evaluating those acoustic parameter values in experiments. Also, in order to validate the experimentally measured values, the results were compared with the results obtained from Chung and Blaser's transfer function method and SWR method. The experimentally measured values of normal absorption coefficients were generally agreed well with the corresponding values from the transfer function method and the SWR method. Based on the experimental results, the following conclusions could be made. The magnitude of the absorption coefficient and the frequency range of the maximum absorption coefficient were controllable by changing the thickness and bulk density of the sound absorbing materials. Also, the magnitude of the absorption coefficient depended on the characteristic impedance and the propagation constant. As large as the air cavity depth at the rear side of the steel-wire sound absorbing materials, the maximum magnitude of the absorption coefficient occurred at the lower frequency ranges.

  • PDF

An Experimental Study on the Sound Absorption Property of a Sintered Clay Material (점토 소결재의 흡음특성에 관한 실험적 연구)

  • Yang, Yoon-Sang;Lee, Dong-Hoon;Seo, Eun-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.365-371
    • /
    • 2013
  • The purpose of this study is to develop a sound absorbing material for indoor which manufactured by a clay and binding material. The seven kind of sound absorbing specimens which sintered through a mold process at high temperature were manufactured for the purpose of testing sound absorption performance. The random and normal sound absorption coefficients were measured for the sintered clay sound absorbing specimens with different particle size, density and mixture ratio. From the experimental results, it was found that its particle size was closely related to the sound absorption performance. It was shown that the sintered clay sound absorbing specimen had the sound absorption properties of a fiber-type or a resonance-type sound absorbing material depending on the particle size.

Acoustical properties of Polypropylene MCPs in low frequency range (Polypropylene MCPs의 저주파대역 음향특성)

  • Lee B.H.;Cha S.W.;Kang Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.828-833
    • /
    • 2005
  • Micro Cellular Plastics create a sensation at polymer industrial for lowering product cost & overcoming a lowering of mechanical intensity. This research based on the experiment of sound absorption & transmission characteristics inquire into acoustical properties of Micro Cellular Plastics in low frequency range. TL difference of MCPs & Soild materials was defined as cell effect. Also, cell effect is expressed by sound reflection & sound absorption.

  • PDF

The sound absorption properties of the recycled PET nonwovens

  • Lee Yun-Ung;Kim Dong-Uk;Baek Mun-Su;Ju Chang-Hwan
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.244-248
    • /
    • 1998
  • The sound absorption materials are generally classified by three types, such as porous, resonator, panel. All of these types are based on theory of energy transform from sound energy to thermal energy. At first, the sound energy transform from the porous type uses to friction and viscose resistance. Secondly, resonator type uses to resonance frequency, absorption coefficient reach the highest.(omitted)

  • PDF

Analysis of the Sound field in a Reverberation Room(II) (잔향실의 음장해석 (II))

  • 임정빈;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.681-686
    • /
    • 1997
  • Foamed aluminum is well known metallic porous sound absorption material which has excellent properties of light weight and high absorbing performance. For the purpose of finding out the sound field characteristics within a simple closed cubic enclosure with foamed aluminum, analytic and experimental studies are performed. For the first time, the standing wave apparatus is used to measure absorption coefficient and impedance of the foamed aluminum. Next, the sound effects of absorption material in acoustically loaded rectangular enclosure are identified according as the foamed aluminim is to be or not.

  • PDF