• Title/Summary/Keyword: sound absorption materials

Search Result 162, Processing Time 0.022 seconds

Changes in Physical Properties of Fibrous Sound Absorption Materials According to the Manufacturing Time (제조시점에 따른 섬유상 흡음재의 물리적 특성 변화)

  • Jeong, Young-Sun;Kim, Kyoung-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.562-568
    • /
    • 2014
  • This study aimed to identify changes in the physical properties of artificial mineral-fiber materials used as building insulation that had been installed in the outer walls of buildings for a long time. To achieve this goal, glass fiber and rock wool were collected from outer walls in actual buildings and their acoustic and thermal performances were measured. These were compared with measurements from similar products manufactured recently. The results showed that old, used samples had a lower sound absorption coefficient compared to recently manufactured materials. The old samples also displayed increased compressibility compared to new materials. For example, the compressibility difference for glass wool was 7.32 mm. Old samples had a dynamic stiffness $1.28MN/m^3$ higher than new material samples. The thermal conductivity of both old and new samples increased within creasing temperature. They showed similar results at temperatures between 0 and $20^{\circ}C$.

A Study on the Absorption Characteristics of Soil Block and Soil Plaster as Eco-Friendly Building Materials (친환경 건축재료로서의 흙벽돌과 흙미장의 흡음 특성에 관한 연구)

  • Hwang, Seong Il;Chu, Mun Ki;Hwang, hey joo;Oh, yang ki
    • KIEAE Journal
    • /
    • v.7 no.3
    • /
    • pp.57-62
    • /
    • 2007
  • Most of current building materials are made of organic compounds or at least made with chemical treatments. Though easy to use and comparatively pay less, those materials are generally not enviornmentally sound. VOC is one of harmful effects. On contrary, natural materials such as soil are usually eco-friendly, and environmentally sustainable as well if not treated in autoclaves. Acoustica materials made of such environmentally sound and sustainable could be widely used. It is aimed to prove that soil based materials could be effectively used in acoustical fields rather than the other usual materials. Experiments with various types of soil blocks and soil plaster were performed. It is proved that the soil plaster has better apsorption features than cement plaster. Soil blocks have higher absorption cofficients than soil plaster, due to the thickness, and the absorption characteristics can be controlled by the design of the blocks.

Sound Absorption Effects in a Rectangular Enclosure with the Foamed Aluminum Sheet Absorber (발포 알루미늄 흡음재를 이용한 단순 폐공간의 내부 음장 변화에 관한 연구)

  • 김상헌;손동구;오재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.177-186
    • /
    • 1998
  • For the purpose of finding out the sound field characteristics in a cavity of a rectangular enclosure with foamed aluminum lining, analytical and experimental studies are performed with random noise input. Experimental method using two-microphone impedance tube measures the absorption coefficients and the impedances of simple sound absorbing materials. Measured acoustical parameters of the test samples are applied to the theoretical analysis to predict sound pressure field in the cavity. The sound absorp- tion effects from measurements are compared to prediction in both cases with and without foamed aluminum lining in the cavity of the rectangular enclosure.

  • PDF

Acoustical properties of Polypropylene MCPs in low frequency range (Polypropylene MCPs의 저주파대역 음향특성)

  • Lee B.H.;Cha S.W.;Kang Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.828-833
    • /
    • 2005
  • Micro Cellular Plastics create a sensation at polymer industrial for lowering product cost & overcoming a lowering of mechanical intensity. This research based on the experiment of sound absorption & transmission characteristics inquire into acoustical properties of Micro Cellular Plastics in low frequency range. TL difference of MCPs & Soild materials was defined as cell effect. Also, cell effect is expressed by sound reflection & sound absorption.

  • PDF

A preliminary study on the measurement method for determining the absorption coefficient of sound barrier panels (방음판의 흡음률 측정방법 제안을 위한 기초 연구)

  • Yang Ki Oh;Ha Geun Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.2
    • /
    • pp.152-160
    • /
    • 2023
  • Sound barrier walls are the most basic way to cope with noise problems in urban residential environments. The most important acoustic function of sound insulation board is represented by sound transmission loss and sound absorption coefficient. However, Korea has not yet established a standard for measuring the sound absorption rate of sound insulation boards. In addition, even in the European standard, where the overall acoustic standard of soundproofing boards has already been established, the sound absorption rate is applied only to the standard for measuring the sound absorption rate of general building finishing materials, and a separate measurement method considering the characteristics of soundproof walls and soundproofing boards is not presented. The sound absorption coefficient should be evaluated by summing up the energy absorbed into the material as well as the energy transmitted through the material, but the current European standard has a problem in that the transmitted sound energy is not taken into account. In this paper, we reviewed the sound absorption coefficient measurement standards of sound insulation boards currently being presented, and verified the difference between the results and the new measurement method considering transmission sound for sound insulation boards actually used in Korea.

Sound absorption of micro-perforated elastic plates in a cylindrical impedance tube (원통형 임피던스 튜브 내 미세천공 탄성 판의 흡음)

  • Kim, Hyun-Sil;Kim, Bong-Ki;Kim, Sang-Ryul;Lee, Seong-Hyun;Ma, Pyung-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.181-187
    • /
    • 2018
  • In this paper, sound absorption of micro-perforated elastic plates installed in an impedance tube of a circular cross-section is discussed using an analytic method. Vibration of the plates and sound pressure fields inside the duct are expressed in terms of an infinite series of modal functions, where modal functions in the radial direction is given in terms of the Bessel functions. Under the plane wave assumption, a low frequency approximation is derived by including the first few plate modes, and the sound absorption coefficient is given in terms of an equivalent impedance of a single surface. The sound absorption coefficient using the proposed formula is in excellent agreement with the result by the FEM (Finite Element Method), and shows dips and peaks at the natural frequencies of the plate. When the perforation ratio is very small, the sound absorption coefficient is dominated by the vibration effect. However, when the perforation ratio reaches a certain value, the sound absorption is mainly governed by the rigid MPP (Micro-Perforated Plate), while the vibration effect becomes very small.

The Study on Fabrication and Sound Absorption Properties of Al-Zn-Mg-Cu Alloy Foams (Al-Zn-Mg-Cu 발포합금 제조 및 흡음특성에 관한 연구)

  • Jeong, Seung-Reung;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.31 no.3
    • /
    • pp.145-151
    • /
    • 2011
  • Metallic foam has been known as a functional material which can be used for absorption properties of energy and sound. The unique characteristics of Al foam of mechanical, acoustic, thermal properties depend on density, cell size distribution and cell size, and these characteristics expected to apply industry field. Al-Zn-Mg-Cu alloy foams was fabricated by following process; firstly melting the Al alloy, thickening process of addition of Ca granule to increased of viscosity, foaming process of addition of titanium hydride powder to make the pores, holding in the furnace to form of cooling down to the room temperature. Metal foams with various porosity level were manufactured by change the foaming temperature. Compressive strength of the Al alloy foams was 2 times higher at 88% porosity and 1.2 times higher at 92% porosity than pure Al foams. It's sound and vibration absorption coefficient were higher than pure Al foams and with increasing porosity.

An Experimental Study on the Sound Insulation Performance for Light-weight Concrete Panel (경량콘크리트 패널의 차음성능에 관한 실험적 연구)

  • Chung, J.Y.;Lee, S.H.;Jeong, G.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.457-460
    • /
    • 2004
  • This study examines the sound insulation of the light-weight wall using light-weight concrete and offers the basic datum for enhancing it. The sound insulation of the light-weight wall is determinated by the density, installation method, absorption materials, air layers etc. Among the factors, the solution of outlet that is the major cause of reducing sound insulation should be made. If absorption materials are installed in the cavity walls, it enhances to 15dB in 500Hz.

  • PDF

Physical and Sound Absorption Properties Estimation of Cherospondias axillaris, Japanese Fast Growing Tree (일본산속성수 찬친모도키재의 물리적 성질과 흡음성능 평가)

  • Kang, Chu-Won;Kim, Gwan-Chul;Kang, Wook;Matsumura, Junji;Tanoue, Misato
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.463-469
    • /
    • 2010
  • To suggest the practical use of fast growing tree, we estimated the physical and sound absorption properties of Cherospondias axillaris which is one of the japanese fast growing species. The average annual ring width and air dry specific gravity were 8 mm and 0.55 respectively. The sound absorption coefficients of Cherospondias axillaris wood generally seemed to be a little higher than those of other construction materials such as 6 mm thick gypsum board and 18 mm thick fiberboard, and considered that it could be used as a constructing material owing to relatively good mechanical properties and sound absorption properties.

Method of deriving the acoustic impedance and sound absorption coefficient of materials by manipulating electrical impedance of a loudspeaker (스피커의 전기적 임피던스를 이용한 시료의 음향임피던스와 흡음계수 도출 기법)

  • Doo, Sejin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.3
    • /
    • pp.254-260
    • /
    • 2021
  • When measuring the sound absorption coefficient of a specimen, a reverberation room which is costly or an impedance tube which has limitations in measuring low frequencies have been engaged. In this paper, a new measurement method of acoustic impedance or sound absorption coefficient has been suggested, which does not need microphones and only uses electrical impedance measurement data and derived Thiele/Small parameters of a speaker. The theory of this method has been described using equivalent circuit of the loudspeaker and acoustic properties of a test specimen are measured to demonstrate the validity of this method. It was confirmed that this method can easily measure the sound absorption coefficient in the low frequency band, which was previously difficult to trust. The advantages, limitations, and applicability of this method are discussed.