• Title/Summary/Keyword: sound absorption material

Search Result 152, Processing Time 0.027 seconds

Prediction and Reduction of Alarm Sound Propagated through Elevator Shaft (엘리베이터 샤프트를 통한 경보음 전달 예측과 개선)

  • Jeong, Jeong-Ho
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.89-96
    • /
    • 2019
  • In this study, alarm sound generated as a priority alert system propagation through an elevator shaft in apartment buildings were simulated using room acoustic simulation software. The simulations were conducted on three kinds of elevator hall plan with a different number of elevators and placement. First, the elevator shaft without sound absorption material was simulated as a condition of the present. When the distance from the alarm sound generating floor became farther, alarm sound level was decreased. However, the alarm sound level three-floor distance was about 54 dB(A)~56 dB(A) which were louder than a background sound level of typical apartment buildings. Sound absorption material placement proposed by previous studies were simulated and the alarm sound levels were decreased about 12 dB~16 dB. These levels were similar or lower than the background level of apartment buildings. From these results, it can be concluded that placing sound absorption material on the surface of the elevator shaft wall can be one of the methods to control the alarm sound as regulated in NFSC.

Investigation of Sound Absorption Ability of Hinoki Cypress (Chamaecyparis obtusa) Cubes

  • JANG, Eun-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.365-374
    • /
    • 2022
  • Today, commercialized Hinoki cypress cubes are used for fragrance, humidification, and pillows in Korea. In this study, the sound absorption ability of Hinoki cypress (Chamaecyparis obtusa) cubes was examined. The three groups of Hinoki cypress cubes were prepared depending on their dimension (L: 9 × 9 × 9, M: 7 × 7 × 7, S: 4 × 4 × 4 mm). Their sound absorption coefficient was examined after filling 6, 8, 10, and 12 cm height in impedance tubes, respectively. Overall, the sound absorption ability depending on dimension was superior in the M group compared to the L and S groups. Also, as the filling height increased, the sound absorption capacity increased. In sum, noise reduction coefficients (NRC) of all Hinoki cypress cubes were 0.41-0.59. Thus, this research found that Hinoki cypress cubes have a sound-absorbing function.

A Study on the Sound Absorption Properties of Cellular Concrete with Continuous voids (연속공극을 갖는 기포콘크리트의 흡음특성에 관한 연구)

  • Lee, Seung-Han;Jung, Yong-Wook;Park, Jung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.566-573
    • /
    • 2003
  • This study was performed to manufacture a rigid sound absorbing material by increasing the continuous void ratio of cellular concrete, thereby achieving an increase in sound absorption ratio and an enhancement in strength of the cellular concrete. By the experiments, it was determined that an increase in sound absorption ratio is achieved by increasing the added amount of air voids, thereby increasing the continuous void ratio. When the material had a thickness of 5 cm, a satisfactory average sound absorption ratio of 70% was obtained at a continuous void ratio of 40% or more. An increase in the thickness of the sound absorbing material resulted in an increase in sound absorption ratio in a super bass range. The specific gravity of cellular concrete meeting an average sound absorption ratio of 70% was 0.4 at a material thickness of 5 cm, and 0.6 or less at a material thickness of 7 cm. The compressive strength of the cellular concrete having a specific gravity of 0.4 meeting an average sound absorption ratio of 70% or more was 1.37 Mpa at a cement fineness of 3,000. This compressive strength was increased to 3.34 MPa at a cement fineness of 8,000. Accordingly, it was determined that the compressive strength of cellular concrete having continuous voids increases with a higher cement fineness.

Investigation of Sound Absorbing Characteristics of the Railway Noise Barrier by Changing the Configuration of the Front Perforated Panel and Absorbing Material (철도 방음벽의 전면 타공과 흡음재에 의한 흡음성능 고찰)

  • Kim, Kwanju;Kim, Sanghun;Park, Jinkyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.575-580
    • /
    • 2013
  • This study focused on the identification of sound characteristics according to the configuration of sound absorption material and perforated panel dimensions. Noise barriers consist of front perforated panel, sound absorption material and back plate. Noise barriers' acoustic performance should be required to meet the NRC of 0.7. The absorbing performance of the noise barrier relies on the opening ratio of perforated panel and the efficiency of the absorbing material. This study try to find out the possibilities of applications to railway usage.

  • PDF

A study on the new absorption material for anechoic water tank (무향수조를 위한 흡음재질에 관한 연구)

  • Kim, Sung-Boo;Lee, Jong-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.2
    • /
    • pp.174-179
    • /
    • 2012
  • A new absorption material, cellulose sponge soaked in cement, was made for anechoic water tank and its acoustical properties were investigated by pulse methods. The sound absorption coefficient a (dB/cm) of the material was obtained in the frequency range of 40~120kHz from the echo reduction ER (dB) and insertion loss IL (dB) data. The result was averagely 1.8dB/cm higher than the sound absorption coefficient a (dB/cm) of cork-filled rubber which is one of the most effective absorption materials. The wedge (1.2~5.0cm long) type absorption tiles were made with this new material. The echo reduction ER (dB) of the absorption tile with 5.0cm wedge measured in water tank was higher than 20dB in the experimental frequency range.

Sound Absorption Measurement by Using Micro-Flown Velocity Sensor (Mciro-flown 속도센서를 이용한 흡음률 측정)

  • 정성수;조문재;김용태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.692-693
    • /
    • 2004
  • We introduce a new velocity sensor, micro-flown sensor, which was developed by H-E de Bree. The sound absorption coefficients of a fiber material with the conventional pressure microphones and the micro-flown sensors were measured and compared. The experimental results show that both sensors could be well applied to measure the sound absorption coefficient but the pressure sensor was rather stable than micro-flown sensor

  • PDF

Sound Absorption Material Using Aluminum Sash (알루미늄 새시를 이용한 흡음구조)

  • Kim, Jung-Joong;Jeong, Jeong-Ho;Sohn, Jang-Yeul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.201-204
    • /
    • 2007
  • 다양한 공연장 및 대공간에서의 실내음향 제어를 위해서는 실내마감재료의 흡음 및 확산성능을 제어할 수 있는 재료가 필요하다. 본 연구에서는 이를 위해 알루미늄 새시를 이용한 흡음구조를 개발하였으며, 흡음특성을 조사하기 위하여 수직입사 흡음계수와 잔향실법 흡음계수를 측정하였다. 수직입사 흡음계수 측정결과 알루미늄 다목적 흡음재의 타공구조와 인서트에 의해 형성되는 공간이 공명형 흡음기의 역할을 하여 중.저주파수 대역의 흡음계수가 증가되는 것으로 나타났다. 잔향실법 흡음계수 측정결과 알루미늄 새시를 이용한 흡음구조의 형성에 따라 공명주파수 대역보다 낮은 중저주파수 대역의 흡음계수가 증가되는 것으로 나타났다. 공기층 증가에 따라 공명주파수 이상 대역에서의 흡음률은 증가되고 주파수 대역별 흡음계수 편차도 감소되는 것으로 나타났으며, 고주파수 대역의 흡음률 향상을 위한 방안이 필요한 것으로 나타났다.

  • PDF

Experimental investigation on thermal behavior, sound absorption, and flammability of natural fibre polymer composites

  • Ravi Kumar, B.;Hariharan, S.S.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.613-618
    • /
    • 2020
  • Exhausting oil resources and increasing pollution around the world are forcing researchers to look for new, renewable, biodegradable materials to lead sustainable development. The use of fiber reinforced composites based on natural fibres has increasingly begun as prospective materials for various engineering applications in the automotive, rail, construction and aerospace industries. The natural fiber chosen to make the composite material is plant-based fibre, e.g. jute fibre, and hemp fibre. Thermosetting polymer based Epoxy (LY556) was utilized as matrix material and The composites were produced using hand lay-up technique. The fabricated composites were tested for acoustic testing, thermo-gravimetric analysis (TGA) and flammability testing to asses sound absorption, thermal decomposition and fire resistivity of the structures. Hemp fibre composites have shown improved thermal stability over Jute fibre composites. However, the fire resistance characteristics of jute fibre composites are better as compared to hemp fibre composites. The sound absorption coefficient of composites was found to enhance with the increase of frequency.

The Acoustical Characteristics of an Absorptive Panel (흡음형 방음판넬의 음향특성)

  • Hwang, Cheol Ho;Jung, Sung Soo;Lee, Woo Seop;Kim, Yong Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1843-1850
    • /
    • 2000
  • Sound absorption coefficient for the absorptive panels comprized of a perforated plate. an absorbent material and an air gap was measured and compared with theoretical value. The absorptive panels are composed of three basic combinations (a perforated plate + an air gap + an absorbent material. a perforated plate + an absorbent material, a perforated plate + an absorbent material + an air gap). As a result. it is found that the sound absorption for low frequency range is strongly affected by the resonance produced by perforated plate and air gap. And the sound absorption for high frequency depends on the porosity of perforated plate.

  • PDF

A preliminary study on the measurement method for determining the absorption coefficient of sound barrier panels (방음판의 흡음률 측정방법 제안을 위한 기초 연구)

  • Yang Ki Oh;Ha Geun Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.2
    • /
    • pp.152-160
    • /
    • 2023
  • Sound barrier walls are the most basic way to cope with noise problems in urban residential environments. The most important acoustic function of sound insulation board is represented by sound transmission loss and sound absorption coefficient. However, Korea has not yet established a standard for measuring the sound absorption rate of sound insulation boards. In addition, even in the European standard, where the overall acoustic standard of soundproofing boards has already been established, the sound absorption rate is applied only to the standard for measuring the sound absorption rate of general building finishing materials, and a separate measurement method considering the characteristics of soundproof walls and soundproofing boards is not presented. The sound absorption coefficient should be evaluated by summing up the energy absorbed into the material as well as the energy transmitted through the material, but the current European standard has a problem in that the transmitted sound energy is not taken into account. In this paper, we reviewed the sound absorption coefficient measurement standards of sound insulation boards currently being presented, and verified the difference between the results and the new measurement method considering transmission sound for sound insulation boards actually used in Korea.