Browse > Article
http://dx.doi.org/10.5658/WOOD.2022.50.5.365

Investigation of Sound Absorption Ability of Hinoki Cypress (Chamaecyparis obtusa) Cubes  

JANG, Eun-Suk (Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.50, no.5, 2022 , pp. 365-374 More about this Journal
Abstract
Today, commercialized Hinoki cypress cubes are used for fragrance, humidification, and pillows in Korea. In this study, the sound absorption ability of Hinoki cypress (Chamaecyparis obtusa) cubes was examined. The three groups of Hinoki cypress cubes were prepared depending on their dimension (L: 9 × 9 × 9, M: 7 × 7 × 7, S: 4 × 4 × 4 mm). Their sound absorption coefficient was examined after filling 6, 8, 10, and 12 cm height in impedance tubes, respectively. Overall, the sound absorption ability depending on dimension was superior in the M group compared to the L and S groups. Also, as the filling height increased, the sound absorption capacity increased. In sum, noise reduction coefficients (NRC) of all Hinoki cypress cubes were 0.41-0.59. Thus, this research found that Hinoki cypress cubes have a sound-absorbing function.
Keywords
Hinoki cypress; Chamaecyparis obtusa; sound-absorbing material; sound absorption coefficient;
Citations & Related Records
Times Cited By KSCI : 22  (Citation Analysis)
연도 인용수 순위
1 Jang, E.S., Kang, C.W. 2021c. Investigation of sound absorption properties of heat-treated Indonesian Momala (Homalium foetidum (Roxb.) Benth.) and Korean Red Toon (Toona sinensis (A. Juss.) M. Roem.) cross sections. Forests 12(11): 1447.   DOI
2 Thilagavathi, G., Neela Krishnan, S., Muthukumar, N., Krishnan, S. 2018. Investigations on sound absorption properties of luffa fibrous mats. Journal of Natural Fibers 15(3): 445-451.   DOI
3 Yang, J., Choi, W.S., Kim, J.W., Lee, S.S., Park, M.J. 2019. Anti-inflammatory effect of essential oils extracted from wood of four coniferous tree species. Journal of the Korean Wood Science and Technology 47(6): 674-691.   DOI
4 Yang, S.M., Lee, H.J., Kang, S.G. 2020. Analysis of heat transfer characteristics by materials in closed conditions using acrylic hemisphere (I): Comparison of interior finishing materials. Journal of the Korean Wood Science and Technology 48(2): 217-230.   DOI
5 Yeon, S., Park, S.Y., Kim, J.H., Kim, J.C., Yang, S.Y., Yeo, H., Kwon, O., Choi, I.G. 2019. Effect of organic solvent extractives on Korean softwoods classification using near-infrared spectroscopy. Journal of the Korean Wood Science and Technology 47(4): 509-518.   DOI
6 Yun, J., Shin, H.C., Hwang, W.J., Yoon, S.M., Kim, Y.S. 2021. Identification of sapstain fungi on weathered wooden surfaces of buildings at Jangheung and Jeju Island. Journal of the Korean Wood Science and Technology 49(6): 591-601.   DOI
7 Arenas, J.P., Crocker, M.J. 2010. Recent trends in porous sound-absorbing materials. Sound and Vibration 44(7): 12-18.
8 Borrell, J.M.G., Sanchis, E.J., Alcaraz, J.S., Belda, I.M. 2020. Sustainable sound absorbers from fruit stones waste. Applied Acoustics 161: 107174.   DOI
9 Fujimoto, Y., Tanaka, H., Morita, H., Kang, S.G. 2021. Development of ply-lam composed of Japanese cypress laminae and Korean larch plywood. Journal of the Korean Wood Science and Technology 49(1): 57-66.   DOI
10 Hwang, J.W., Oh, S.W. 2022. Formaldehyde deodorization effect and far-infrared emission characteristics of ceramics prepared with sawdust, risk husk, and charcoal: Effect of material mixing ratio. Journal of the Korean Wood Science and Technology 50(2): 104-112.   DOI
11 ISO 10534-2. 2001. Acoustics-Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes-Part 2 Transfer-function Method. International Organization for Standardization (ISO), Geneva, Switzerland.
12 ISO 11654. 1997. Acoustics - Sound Absorbers for Use in Buildings - Rating of Sound Absorption. International Organization for Standardization (ISO), Geneva, Switzerland.
13 Jang, E.S. 2022b. Peanut shells as an environmentally beneficial sound-absorbing material. Journal of the Korean Wood Science and Technology 50(3): 179-185.   DOI
14 Brunet-Navarro, P., Jochheim, H., Kroiher, F., Muys, B. 2018. Effect of cascade use on the carbon balance of the German and European wood sectors. Journal of Cleaner Production 170: 137-146.   DOI
15 Jang, E.S., Kang, C.W. 2021e. Sound absorption characteristics of three species (binuang, balsa and paulownia) of low density hardwood. Holzforschung 75(12): 1115-1124.   DOI
16 Jang, E.S., Kang, C.W. 2021f. The use of ring-porous East Asian ash (Fraxinus japonica (Thunb.) Steud.) and oak (Quercus spp.) cross-sections as eco-friendly resonance-absorbing materials for building. Wood Material Science & Engineering. https://doi.org/10.1080/17480272.2021.1987518   DOI
17 Jang, E.S., Kang, C.W. 2022b. Influence of surface finishing of hardwood cross-section on sound absorption performance. BioResources 17(2): 2874-2883.   DOI
18 Jang, E.S., Yuk, J.H., Kang, C.W. 2020. An experimental study on change of gas permeability depending on pore structures in three species (Hinoki, Douglas fir, and Hemlock) of softwood. Journal of Wood Science 66(1): 78.   DOI
19 Jang, E.S., Kang, C.W. 2022c. Why the sound-absorbing performance of heartwood and sapwood differs in yellow poplar (Liriodendron tulipifera) cross-sections? Wood Research 67(3): 372-382.   DOI
20 Jang, E.S., Kang, C.W., Kang, H.Y., Jang, S.S. 2018b. Sound absorption property of traditional Korean natural wallpaper (Hanji). Journal of the Korean Wood Science and Technology 46(6): 703-712.   DOI
21 Kim, J.G., Kang, S.G., Mostafiz, M.M., Lee, J.M., Lee, K.Y., Hwang, T.K., Lim, J.T., Kim, S.Y., Lee, W.H. 2020. Insect repellency and crop productivity of essential oil films. Journal of the Korean Wood Science and Technology 48(1): 95-106.   DOI
22 Kim, J.Y., Kim, B.R. 2021. Hygroscopicity and ultraviolet (UV) deterioration characteristics of finished woods. Journal of the Korean Wood Science and Technology 49(5): 471-481.   DOI
23 Lee, M., Park, S.B., Lee, S.M. 2016. Comparison of moisture absorption/desorption properties of carbonized boards made from wood-based panels. Journal of the Korean Wood Science and Technology 44(3): 424-429.   DOI
24 Li, Q., Kobayashi, M., Wakayama, Y., Inagaki, H., Katsumata, M., Hirata, Y., Hirata, K., Shimizu, T., Kawada, T., Park, B.J., Ohira, T., Kagawa T., Miyazaki, Y. 2009. Effect of phytoncide from trees on human natural killer cell function. International Journal of Immunopathology and Pharmacology 22 (4): 951-959.   DOI
25 Mokhirev, A., Rukomojnikov, K., Gerasimova, M., Medvedev, S. 2021. Design of logging infrastructure in consideration of the dynamically changing environment. Journal of the Korean Wood Science and Technology 49(3): 254-266.   DOI
26 Korean Standards Association. 2016. Determination of Moisture Content of Wood. KS F 2199. Korean Standards Association, Seoul, Korea.
27 Park, K.C., Kim, B., Park, H., Park, S.Y. 2022. Peracetic acid treatment as an effective method to protect wood discoloration by UV light. Journal of the Korean Wood Science and Technology 50(4): 283-298.   DOI
28 Park, S., Han, Y., Son, D.W. 2020. Flame retardancy of wood products by spreading concentration and impregnation time of flame retardant. Journal of the Korean Wood Science and Technology 48(4): 417-430.   DOI
29 Schulz, H.R., Acosta, A.P., Barbosa, K.T., Junior, M.A.P.S., Gallio, E., Delucis, R.A., Gatto, D.A. 2021. Chemical, mechanical, thermal, and colorimetric features of the thermally treated Eucalyptus grandis wood planted in Brazil. Journal of the Korean Wood Science and Technology 49(3): 226-233.   DOI
30 Jang, E.S. 2022c. Use of pine (Pinus densiflora) pollen cones as an environmentally friendly sound-absorbing material. Journal of the Korean Wood Science and Technology 50(3): 186-192.   DOI
31 Jang, E.S., Kang, C.W. 2021b. Effect of porous traits of hardwoods cross-section on sound absorption performance -Focus on 6 species of Korean hardwoods. Wood and Fiber Science 53(4): 260-272.   DOI
32 Jang, E.S. 2022a. Experimental investigation of the sound absorption capability of wood pellets as an eco-friendly material. Journal of the Korean Wood Science and Technology 50(2): 126-133.   DOI
33 Bellassen, V., Luyssaert, S. 2014. Carbon sequestration: Managing forests in uncertain times. Nature 506 (7487): 153-155.   DOI
34 Dirna, F.C., Rahayu, I., Zaini, L.H., Darmawan, W., Prihatini, E. 2020. Improvement of fast-growing wood species characteristics by MEG and nano SiO2 impregnation. Journal of the Korean Wood Science and Technology 48(1): 41-49.   DOI
35 Ikei, H., Song, C., Miyazaki, Y. 2018. Physiological effects of touching Hinoki cypress (Chamaecyparis obtusa). Journal of Wood Science 64(3): 226-236.   DOI
36 Jang, E.S., Kang, C.W. 2021a. Delignification effects on Indonesian Momala (Homalium foetidum) and Korean Red Toon (Toona sinensis) hardwood pore structure and sound absorption capabilities. Materials 14(18): 5215.   DOI
37 Jang, E.S., Kang, C.W. 2021d. The pore structure and sound absorption capabilities of Homalium (Homalium foetidum) and jelutong (Dyera costulata). Wood Science and Technology 56(1): 323-344.   DOI
38 Jang, E.S., Kang, C.W. 2022a. Change in sound absorption capability on thermally modified transverse and radial planes of Indonesian Homalium foetidum. BioResources 17(3): 5234-5242.   DOI
39 Jang, E.S., Kang, C.W., Jang, S.S. 2018a. Comparison of the Mercury intrusion porosimerty, capillary flow porometry and gas permeability of eleven species of Korean wood. Journal of the Korean Wood Science and Technology 46(6): 681-691.   DOI
40 Kang, C.W., Jang, E.S., Jang, S.S., Kang, H.Y., Kang, S.G., Oh, S.C. 2019. Sound absorption rate and sound transmission loss of wood bark particle. Journal of the Korean Wood Science and Technology 47(4): 425-441.   DOI
41 Kim, Y., Lee, S. 2017. Sound absorption performance of noise barrier according to single number rating methods. Transactions of the Korean Society for Noise and Vibration Engineering 27(2): 243-250.   DOI
42 Lee, S.H., Lee, Y.J., Oh, J.H., Jang, C.S., Hong, S.M. 2017. An Activation Research on the 6th Industrialization of Forestry. Gyeonggi Research Institute, Suwon, Korea.
43 Park, H.J., Jo, S.U. 2020. Evaluation of physical, mechanical properties and pollutant emissions of wood-magnesium laminated board (WML board) for interior finishing materials. Journal of the Korean Wood Science and Technology 48(1): 86-94.   DOI
44 Peng, L., Liu, M., Wang, D., Song, B. 2018. Sound absorption properties of wooden perforated plates. Wood Research 63(4): 559-572.