• Title/Summary/Keyword: sound absorption material

Search Result 151, Processing Time 0.045 seconds

Acoustic Characteristics of a Helmholtz Resonator with Built-In Sound Absorption Panel (흡음판이 내장된 헬름홀츠 공명기의 흡음특성)

  • Yang, Yoon-Sang;Baek, Du-San;Lee, Dong-Hoon;Park, Choon-keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.121-124
    • /
    • 2014
  • Many of research on noise reduction techniques have been progressed for the improvement of noise environment in subway train. There are many way to noise reduction techniques in the tunnel, but it has been reported as an alternative to attach sound absorption material on tunnel wall. For this reason sound absorption material has been studied for application of tunnel. The objective of this study is to investigate design parameters on a Helmholtz resonator with built-in sound absorption panel for the reduction of the tunnel noise in the subway. Sound absorption panel composed of the perforated panel with sub-millimeter holes and the airspace backed a rigid wall or between panels. The experiment is performed through the change of number of perforated panel, cross sectional area and the depth of airspace of the sound absorption panel under the normal incidence sound.

  • PDF

Sound Absorbing Characteristics According to Interior Configuration of Noise Barrier (흡음형 방음벽의 내부 구성에 따른 흡음특성)

  • 박진규;김상헌;김관주;박희준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.387-392
    • /
    • 2003
  • This study is put a focus on the identification of sound characteristics according to the interior configuration of sound absorption material and air gap. Noise barrier is general consists of front perforated panel, air layer, sound absorption material, air gap and back plate. Noise barrier is required to the NRC value of 0.7. The absorbing performance of the noise barrier relies on the opening ratio of the perforated panel and the efficiency of the absorbing material. This study has observed the effect of opening ratio and hole size, the increase of sound absorbing performance by the configurations of sound absorption material and air gap. New designed noise barrier is achieved the acoustical performance of 0.87 the measurement in a reveration room.

  • PDF

A Study on the Characteristic of Sound Absorption of the Polyester Non-Woven Fabrics Used for the Automobile Sound Absorption Material (폴리에스터 부직포를 이용한 자동차용 흡음재의 흡음특성에 관한 연구)

  • 변홍식;이태관
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.427-434
    • /
    • 2001
  • The sound absorption materials With polyester (PET) were prepared for automobile. They consist of 3 layers with different size of PET fiber (3 and 15 deniers) in order to optimize the characteristic of sound absorption, and with various densities (895~1790 g/$cm^2$) by controlling the weight of PET of each layer. They were also compared with the commercial sound absorption materials made of glass wool. It was shown that the new PET had better absorption capability in both high and low frequency regions than that of the commercial material. It was revealed also that the density and the thickness of PET played an important role to determine the capability of sound absorption. The NRC (noise reduction coefficient) was increased by 22-39% with optimized PET sound absorption material. It should be noted that the PET can substitute the glass wool, a commercial sound absorption material, in view of environment and as well as recycle capability of sound absorption.

  • PDF

Case Study on Sound Absorption Rate Measurement Method of PTFE Membrane Material (테프론(PTFE) 막재료의 흡음율 측정방법에 대한 연구)

  • Park, Hye-Na;Kim, Jung-Joong;Shon, Jang-Ryul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.645-648
    • /
    • 2005
  • The grounds of multipurpose practical use degree are built much holding world cup 2002 but material that is used in this building most external membrane ceiling is accomplishing PTEE A master and servant. Therefore, this research analyzed assessment about sound absorption special quality that measure ventilation quantitys of 10 act material and analyze correlation with Air Permeability and the sound absorption rate, and follow in change of layer of air of inside facts material. Result is as following. When Air Permeability good dimension is 5$\sim$15 cc/cm$^2$/sec and acoustic absorptivity is the best as Air Permeability result that measure acoustic absorptivity of inside facts material particularly firstly, could know 8$\sim$9 cc/cm$^2$/sec love. When establish sound absorption inside facts in external membrane as result that measure acoustic absorptivity of inside (acts material secondly, could know that acoustic absorptivity is good though become about minimum back layer of air 900mm.

  • PDF

Effects of Material Properties on Optimal Configuration Design of Absorbing Porous Materials (흡음을 위한 다공성 물질의 최적형상설계에서 물성치의 영향)

  • Lee, Joong-Seok;Kim, Yoon-Young;Kang, Yeon-June
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.622-624
    • /
    • 2008
  • This investigation studies the effects of material properties and corresponding propagation wave types on optimal configurations of sound absorbing porous materials in maximizing the absorption performance by topology optimization. The acoustic behavior of porous materials is characterized by their material properties which determine motions of the frame and the air. When the frame has a motion, two types of compressional wave propagate in the porous material. Because each wave in the material make different influence on the absorption performance, it is important to understand the relative contribution of each wave to the sound absorption. The relative contribution of the propagating waves in a porous material is determined by the material properties, therefore, an optimal configuration of a porous material to maximize the absorption performance is apparently affected by the material properties. In fact, virtually different optimal configurations were obtained for absorption coefficient maximization when the topology optimization method developed by the authors was applied to porous materials having different material properties. In this investigation, some preliminary results to explain the findings are presented. Although several factors should be considered, the present investigation is focused on the effects of the material properties and corresponding propagation waves on the optimized configurations.

  • PDF

Analysis of the Sound field in a Reverberation Room(II) (잔향실의 음장해석 (II))

  • 임정빈;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.681-686
    • /
    • 1997
  • Foamed aluminum is well known metallic porous sound absorption material which has excellent properties of light weight and high absorbing performance. For the purpose of finding out the sound field characteristics within a simple closed cubic enclosure with foamed aluminum, analytic and experimental studies are performed. For the first time, the standing wave apparatus is used to measure absorption coefficient and impedance of the foamed aluminum. Next, the sound effects of absorption material in acoustically loaded rectangular enclosure are identified according as the foamed aluminim is to be or not.

  • PDF

The effect of diffusers on the measurement of sound absorption in a reverberation room (잔향실법 흡음률 측정에 미치는 확산체의 영향)

  • Han, Hee-Kab;Kim, Kyung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1194-1197
    • /
    • 2006
  • Recently, international standard for measurement of sound absorption in a reverberation room has been amended. In the revised version, temperature, humidity and air pressure conditions are strictly restricted and also the concrete procedures are presented to reduce the differences in test results by adding inspection of diffusion, measurement uncertainty etc. In this paper, the systematic tests are conducted based on the inspection guide of diffusion defined by ISO 354 and the effects of diffusers on the measurement of sound absorption ratio are considered. As a result, we perceived that the averaged sound absorption ratio in mid and high frequency range is expected to measure around $0.05{\sim}0.1$ higher in high sound absorption material. Therefore, as for the reverberation room for measurement of sound absorption, we need to take into consideration not only the spatial standard deviation of sound pressure mandated by ISO 3741, but also, inspection regulation of diffusion showed by ISO 354.

  • PDF

Floor Impact Sound Pressure Level Characteristics by the Change of Reverberation Time in a Reverberation Chamber (수음실 잔향 시간변화에 따른 바닥충격음레벨 특성 - 잔향실을 중심으로 -)

  • Jeong, Jeong Ho;Kim, Jeong Uk;Jeong, Jae Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.274-281
    • /
    • 2013
  • Field measurement method of heavy/soft impact sound pressure level which is regulated in JIS and ISO has been using in Korea, Japan and Canada. It is reported that heavy/soft impact sound pressure level was varied by the sound field condition of receiving room such as sound absorption power and room volume. In this study, it is checked that heavy/soft impact sound pressure level was affected by the receiving sound field condition. Rubber ball and bang machine sound pressure level was measured in the vertically connected reverberation chamber. In oder to check the effect of receiving sound field on heavy/soft impact sound pressure, sound absorption power was changed with polyester sound absorption blankets with air space and glass wool. The reverberation time at 1 kHz band was changed from 10 s to 0.2 s by sound absorption material. Rubber ball sound pressure level measured without sound absorption material was 58 dB in $L_{i,Fmax,AW}$, but the level was 46 dB with sound absorption treatment. From this result, it is confirmed that sound field correction method is needed in the heavy/soft impact sound pressure level measurement method using bang machine and rubber ball.

A Study on the Development of Sound Absorption Material Using Perlite for Noise Barrier Wall (펄라이트를 이용한 방음벽의 흡음소재 개발에 관한 기초적 연구)

  • Jo, Young-Kug;Yang, Ju-Kyung
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.653-660
    • /
    • 2008
  • The purpose of this study is to analyze the optimal mix design of the sound absorption material that is made from perlite and various binder systems for noise barrier wall. The polymer cement slurry which is made from two types of polymer dispersions, and silicone type inorganic material are used as binder. The test specimens are prepared with various polymer cement ratios, binder ratios, and tested for strengths, freezing and thawing and sound absorption performance by the tube and the reverberation room methods. From the test results, the difference of sound absorption coefficient by the tube method is a little recognized, however, noise reduction coefficient (NRC) of test specimens bound by the polymer cement slurry is in the ranges of 0.48 to 0.51. They are a little higher than those bound by cement only, and are lower values than recommended value of 0.7 by the Ministry of Environment. However, the sound absorption coefficient of test specimens at low frequency range of 250 to 500 Hz by reverberation room method shows very high values as 0.84 to 1.00, and 0.57 to 0.77 at the high frequency. The test specimens with polymer cement slurry binder have a good balance between performance and cost, and have proper properties in strengths, freezing and thawing resistance as sound absorption material for noise barrier wall. It is apparent that the good sound absorption material can be produced according to the optimum mix design that is recommended from this study.

A Study on Sound Absorption of Polyester Dry-laid Nonwovens (폴리에스터 건식부직포의 흡음성 연구)

  • Bae, Younghwan;Lee, Myungsung;Kim, Jung Yeon;Choi, Yeong Og;Yeo, Sang Young
    • Textile Coloration and Finishing
    • /
    • v.34 no.1
    • /
    • pp.38-45
    • /
    • 2022
  • Sound absorbing materials are being developed in various materials and shapes and they are being applied in many fields such as construction, transportation, civil engineering, and sound. Among many sound-absorbing materials, polyester fiber has no environmental problems and harmfulness, and is a material with good sound absorption properties while being inexpensive. So it is manufactured as a nonwoven sound-absorbing material and used in various fields. In this study, polyester dry-laid nonwoven with different basis weight were manufactured using three types of polyester staple fibers: regular solid, single-hole hollow, and low linear density. We focused on the effects of the properties of the fibers, which constitute nonwovens, on the sound absorption properties, and we considered the basis weight. As the basis weight of the nonwoven fabric increased, the pore size became smaller and the air permeability was lowered, but the sound absorption coefficient was higher. However, the single-hole hollow polyester fiber did not contribute to the increase of the sound absorption coefficient of the nonwoven. It was established that, lower fiber fineness caused the sound absorption coefficient of the nonwoven to be increased. It was also found that the increase in the sound absorption coefficient due to the application of low fineness appeared from a certain basis weight or more.