• Title/Summary/Keyword: sonar dome

Search Result 15, Processing Time 0.025 seconds

Impact Analysis for Sonar Domes Collided with Logs (수중 부유물에 의한 소나돔 충격해석)

  • Kang, Myung-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.564-571
    • /
    • 2011
  • During navigation of warships, sonar domes have been damaged by collision with floating objects like logs. In order to analyze the damage of a sonar dome from collisions with a log, The analytical method and the numerical analysis using ABAQUS are performed. Throughout the analytical method, the mechanism of collision between a sonar dome and log is analyzed. To design a sonar dome, the numerical analysis for A type sonar dome and the B type sonar dome have done considering fluid loading effect around the sonar domes with normal and maximum speeds of the ship, respectively. The numerical analysis results of the A type sonar dome and the B type sonar dome are compared and analyzed.

Numerical analysis of acoustic field inside sonar dome by using a beam tracing method and the theory of elastic wave propagation (빔 추적기법과 다층구조에서의 탄성파 전파이론을 적용한 소나돔 내부 음장 수치해석)

  • Han, Seung-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.26-33
    • /
    • 2006
  • A sonar dome is basically designed and installed to protect sonar array from shocks, sea wave slaps and floating matters. The acoustic wave passing through sonar dome, however, can be distorted in magnitude and phase. This paper presents a numerical method for predicting the steady-state sound pressure on the surface of transducer array in the sonar dome and typical results of sonar beam pattern affected by sonar dome. A beam tracing model with phase information and a multi-layered elastic boundary model are involved. A full three-dimensional sonar dome is modeled as a GRP acoustic window, a rubber coated steel baffle and a rubber coated steel hull. A transducer array is modeled as thick steel cylinder. There are some assumptions such as incidence of plane wave, specular reflection on boundary and directionality of transducer element.

Investigation of Flow Noise Source of Hull Mounted Sonar Dome (선저 소나돔의 유체소음원 특성 분석)

  • Shin, Ku-Kyun;Kang, Myengwhan;Yi, Jong-Ju;Seo, Youngsoo;Lee, Kyung-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.575-576
    • /
    • 2014
  • The Hull Mounted Sonar Dome housing the sonar sensor array is a ship's structure protruded from ship bottom, which is under turbulent flow. The flow of sonar surface is highly disturbed and turbulent. In this case the wall pressure fluctuations within the turbulent boundary layer are one of the most important flow induced self noise sources of the SONAR system. We investigate the characteristics of the wall pressure fluctuations of the hull mounted sonar dome through the model test in the cavitation tunnel. This paper contains the wall pressure fluctuation spectra at various free stream velocities.

  • PDF

Variation of the structural stability for the sonar dome window in a naval vessel according to the state of the drain valve (소나돔 충, 배수 밸브의 상태에 따른 함정용 소나돔 윈도우의 구조안정도 변화)

  • Han, HyungSuk;Lee, KyungHyun;Park, SeongHo;Lim, YongSoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.844-853
    • /
    • 2014
  • Since the active sonar for a naval vessel is usually installed in a bulbous bow, GRP(Glass reinforced plastic) material with low density and high strength is used for the material of the sonar dome window in order to prohibit impact by slamming wave or foreign material in the sea. The structural safety of the sonar dome is varied according to the interior and exterior distributed pressure on the sonar dome. Therefore, the variation of the structural safety according to the pressure variation of the sonar dome window caused by the drain valve state is studied by CAE.

2-Dimensional FEM Based Transient Analysis for an Efficient Design of Acoustic Windows (효율적인 음향 윈도우 설계를 위한 2차원 유한요소법 기반의 과도 해석)

  • Kim, Y.C.;Kim, S.K.;Yoon, S.W.;Lee, Y.;Cho, M.S.;Shin, Ku-Kyun;Koo, J.C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.673-678
    • /
    • 2009
  • The efficiency of active sonar that is used underwater observation equipment is important for obtain the information of topography and trace for the objects. Sound wave transmitted from sonar are distorted by acoustic window which is to protect sonar. Making various sonar dome is impossible for experiment, because consumed unnecessary time and expense. So, the purpose of this study is to simulate and analyze the acoustic window propagated sound wave from sonar for designing model reduced insertion loss. Simulation is performed by transient analysis and fluid-structure interaction analysis. As a result, this study will give a opportunity for efficient design of sonar dome without high cost and time consumption.

Turbulent-induced Noise of 2-dimensional Sonar Dome Shaped Structure (2차원 소나돔 형상 구조물의 난류유동소음 해석)

  • Choi, Yo-Seb;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Choi, Woen-Sug;Jung, Chul-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.39-48
    • /
    • 2016
  • The latest research has shown that the turbulence-induced noise is important in total characteristics of flow noise. Also, turbulence-induced noise have a significant influence for performance of sonar dome. In this paper, Flow analysis is performed on vicinity of the sonar dome model using Large Eddy Simulation method. Also, direct method that extracts perturbational sound pressure, FW-H method without turbulence-induced noise and permeable FW-H method that is able to calculate turbulence- induced noise were compared in order to show turbulence effect.

A Study on the Measurement and Analysis Method for the Acoustic Transmission Loss of the Material for the Acoustic Window of Sonar Dome (소나 돔 음향창 시편 투과손실 측정/분석 방법 고찰)

  • Jung, Woo-Jin;Han, Seung-Jin;Kim, Won-Ho;Shin, Ku-Kyun;Jeon, Jae-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.729-738
    • /
    • 2006
  • Knowledge of acoustic transmission loss of acoustic window material has a great importance for the sonar performance in ship. The purpose of this study was to investigate the measurement and analysis method for the acoustic transmission loss of the acoustic window materials for sonar dome. The measurement and analysis were carried out in water with GRP material. Transmission losses were calculated based on integrated direct and transmitted signals. The experimental setup enabled to vary the angle of incidence. Thus the transmission loss data could be expressed as the function of frequency and angle of rotation. In this paper, diffraction effect of incident angle, size of specimen with test material, transmission analysis method and multiple waves as incident acoustic signal were discussed.

A Study on the Measurement and Analysis Method for the Acoustic Transmission Loss of the Material for the Acoustic Window of Sonar Dome (소나 돔 음향창 시편 투과손실 측정/분석 방법 고찰)

  • Jung, Woo-Jin;Han, Seung-Jin;Kim, Won-Ho;Shin, Ku-Kyun;Jeon, Jae-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1183-1189
    • /
    • 2006
  • Knowledge of acoustic transmission loss of acoustic window material has a great Importance for the sonar performance in ship. The purpose of This study was to investigate the measurement and analysis method for me acoustic transmission loss of the acoustic window materials for sonar dome. The measurement and analysis were carried out in water with GRP material. Transmission losses were calculated based on integrated direct and transmitted signals. The experimental setup enabled to vary the angle of incidence. Thus the transmission loss data could be expressed as the function of frequency and angle of rotation. In this paper, diffraction effect of incident angle, size of specimen with test material, transmission analysis method and multiple waves as incident acoustic signal wet-e discussed

  • PDF

A Study on the Acoustic Baffle to Reduce Ghost Target According to Structure behind Cylindrical Array Sensor (원통형 배열센서 후면 구조물에 의해 발생하는 허위 표적 감소를 위한 음향 배플 연구)

  • Seo, Young Soo;Kim, Dong Hyun;Kim, Jin Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.6
    • /
    • pp.440-446
    • /
    • 2015
  • Acoustic signal is emitted from a vessel and received by a cylindrical array sensor at some distance from the vessel. Acoustic signal is the source for a cylindrical array sensor which is designed to detect the acoustic signal. Cylindrical array sensors seldom have an ideal hydrodynamic shape and are not sufficiently robust to survive without some protection and they are normally housed in a sonar dome. Reflected signals by some structure inside a sonar dome make unwanted signals. Therefore, an acoustic baffle is used to minimize unwanted signals. The performance of the acoustic baffles can be determined from the acoustic numerical analysis at the design stage. In this study, finite element method was used to analyze the acoustic field around the cylindrical array sensor and baffle effects. The baffle performance can be defined the echo reduction. To show the baffle performance, the specimens were made for pulse tube test and echo reductions were measured during the test. In this paper, the effect of echo reduction of the acoustic baffle was discussed.