• 제목/요약/키워드: somatic plant

검색결과 432건 처리시간 0.025초

High frequency somatic embryogenesis and plant regeneration of interspecific ginseng hybrid between Panax ginseng and Panax quinquefolius

  • Kim, Jong Youn;Adhikari, Prakash Babu;Ahn, Chang Ho;Kim, Dong Hwi;Kim, Young Chang;Han, Jung Yeon;Kondeti, Subramanyam;Choi, Yong Eui
    • Journal of Ginseng Research
    • /
    • 제43권1호
    • /
    • pp.38-48
    • /
    • 2019
  • Background: Interspecific ginseng hybrid, Panax ginseng ${\times}$ Panax quenquifolius (Pgq) has vigorous growth and produces larger roots than its parents. However, F1 progenies are complete male sterile. Plant tissue culture technology can circumvent the issue and propagate the hybrid. Methods: Murashige and Skoog (MS) medium with different concentrations (0, 2, 4, and 6 mg/L) of 2,4-dichlorophenoxyacetic acid (2,4-D) was used for callus induction and somatic embryogenesis (SE). The embryos, after culturing on $GA_3$ supplemented medium, were transferred to hormone free 1/2 Schenk and Hildebrandt (SH) medium. The developed taproots with dormant buds were treated with $GA_3$ to break the bud dormancy, and transferred to soil. Hybrid Pgq plants were verified by random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) analyses and by LC-IT-TOF-MS. Results: We conducted a comparative study of somatic embryogenesis (SE) in Pgq and its parents, and attempted to establish the soil transfer of in vitro propagated Pgq tap roots. The Pgq explants showed higher rate of embryogenesis (~56% at 2 mg/L 2,4-D concentration) as well as higher number of embryos per explants (~7 at the same 2,4-D concentration) compared to its either parents. The germinated embryos, after culturing on $GA_3$ supplemented medium, were transferred to hormone free 1/2 SH medium to support the continued growth and kept until nutrient depletion induced senescence (NuDIS) of leaf defoliation occurred (4 months). By that time, thickened tap roots with well-developed lateral roots and dormant buds were obtained. All Pgq tap roots pretreated with 20 mg/L $GA_3$ for at least a week produced new shoots after soil transfer. We selected the discriminatory RAPD and ISSR markers to find the interspecific ginseng hybrid among its parents. The $F_1$ hybrid (Pgq) contained species specific 2 ginsenosides (ginsenoside Rf in P. ginseng and pseudoginsenosides $F_{11}$ in P. quinquefolius), and higher amount of other ginsenosides than its parents. Conclusion: Micropropagation of interspecific hybrid ginseng can give an opportunity for continuous production of plants.

Agrobacterium 매개에 의한 고구마 형질전환 및 식물체 재분화 (Agrobacterium- mediated Genetic Transformation and Plant Regeneration of Sweetpotato (Ipomoea batatas))

  • 임순;양경실;권석윤;백기엽;곽상수;이행순
    • Journal of Plant Biotechnology
    • /
    • 제31권4호
    • /
    • pp.267-271
    • /
    • 2004
  • 국내 고구마 율미 품종의 배발생 캘러스를 Agrobacterium 매개 방법을 이용하여 형질전환 식물체를 개발하였다. 배발생 캘러스를 7일 동안 전배양 한 후 Agrobacterium과 2일 간 공동배양할 경우 일시적인 형질전환 효율이 가장 높았다. Agrobacterium과의 공동배양 후 배발생 캘러스를 1mg/L 2,4-D, 100mg/L kanamycin, 400mg/L claforan 이 첨가된 선발배지에서 4주 간격으로 계대배양하였다. 선발된 kanamycin 저항성 캘러스를 2,4-D를 제거한 선발배지로 옮겨 체세포배를 유도하였으며 이후 소식물체로 발달하였다. Southern 분석으로 1-3 copy의 GUS 유전자가 고구마 염색체내로 도입되었음을 확인하였다. 또한 조직학적 분석으로 GUS 유전자가 형질전환 고구마의 배발생 캘러스, 재분화 식물체의 잎, 엽병, 및 뿌리 조직에서 강하게 발현됨을 알 수 있었다.

High Frequency Plant Regeneration from Leaf, Petiole and Internode Explants of Codonopsis lanceolata Benth.

  • Ghimire, Bimal Kumar;Shin, Chul-Min;Li, Cheng Hao;Kim, Na-Young;Chung, III-Min;Lim, Jung-Dae;Kim, Jae-Kwang;Kim, Myong-Jo;Cho, Dong-Ha;Yu, Chang-Yeon
    • 한국약용작물학회지
    • /
    • 제15권2호
    • /
    • pp.73-81
    • /
    • 2007
  • An efficient regeneration system was developed using leaf, petiole, and internode explants. Highly embryogenic callus was obtained following cultivation on MS basal nutrient supplemented with 2 $mg/{\ell}$ 2,4-D. Globular, heart, torpedo and cotyledon shaped somatic embryo were produced from the surface of embryogenic callus. Direct shoot regeneration without intermediate callus formation has been achieved on MS medium supplemented NAA and BAP. The percentage of response varies with different concentration of auxin and cytokinin treated individually or in combination. The best shoot regeneration response (54.28%) and number of shoot per explant (12.67) were achieved on the medium supplemented with 0.1 $mg/{\ell}$ NAA and 1 $mg/{\ell}$ BAP. The regenerated shoot transformed into young plant when cultured into elongation and root induction medium. More than 90% of in vitro propagated plants could survive when transferred to the greenhouse for acclimation. This optimized regeneration system can be used for rapid shoot proliferation and genetic transformation.

미나리에서 비배발생캘러스와 배발생캘러스간의 분화능력 및 해부학적, 생화학적 특성비교 (Totipotential, Morphological, Biochemical Comparisons between Nonembryogenic Callus and Embryogenic Callus in Water Dropwort(Oenanthe stolonifera DC))

  • 빈철구;김병동
    • 식물조직배양학회지
    • /
    • 제24권3호
    • /
    • pp.167-173
    • /
    • 1997
  • The embryogenic callus (EC), from which somatic embryos could be induced, was compared with nonembryogenic callus(NE) to study the origin and features of totipotent cell in water dropwort (Oenanthe stolonifera DC). To induce and maintain of EC and the NE, meristematic stem and immature floret were inoculated in MS media supplemented with 1 mg/L 2,4-D, and with 2.5 mg/L NAA and 5mg/L BA, respectively, The EC was not induced from the NE even after subculturing in MS medium supplemented with 1 mg/L 2,4-D. Plantlets were not regenerated from the NE in hormone-free medium. In histochemical comparison of the EC with the NE by light microscopy, the EC had smaller cells in size, dense cytoplasm, and more starch granules of cells compared to the NE cells. The cell from the EC, as observed by transmission electron microscopy, had smaller vaculoes, well developed ribosomes, mitochondria, and endoplasmic reticulum, whereas the cells from the NE had larger vacuoles and underdeveloped organelles. In protein pattern from NE, EC and Somatic embryo (SE), as analyzed by SDS polyacrylamide gel electrophoresis, different proteins specific for tissue were observed: 17 and 28 KD for NE, 50, 52, 57, 66, 68 KD for EC and 20 KD for SE. DNA polymorphism was also observed between EC and NE as analyzed by RAPD (randomly amplified polymorphic DNA) method. The origin of totipotent stem cell and the relationship between irreversible genomic change arose in differentiation and the loss of totipotency in plant were discussed.

  • PDF

Embryogenic callus culture of Tribulus terrestris L. a potential source of harmaline, harmine and diosgenin

  • Nikam, T.D.;Ebrahimi, Mohammad Ali;Patil, V.A.
    • Plant Biotechnology Reports
    • /
    • 제3권3호
    • /
    • pp.243-250
    • /
    • 2009
  • In the present study, a simple one medium formulation protocol for callus culture, somatic embryogenesis and in vitro production of ${\beta}-carboline$ alkaloids and diosgenin in Tribulus terrestris L. was developed. Extensive callus induction and proliferation was obtained in leaf explant on Murashige and Skoog (MS) medium supplemented with $5.0{\mu}M$ 6 benzyl adenine (BA) and $2.5{\mu}M$ ${\alpha}-naphthaleneacetic$ acid (NAA). The embryogenic callus was maintained on subculture to fresh parental medium at 4-week intervals over a period of 28 months. The frequency of embryo formation was at a maximum ($18.1{\pm}0.9$ per g of callus) on MS medium containing $5.0{\mu}M$ BA and $2.5{\mu}M$ NAA together with $75mg\;1^{-1}$ casein hydrolysate. Globular embryo developed into torpedo stage embryo under the influence of starvation. The accumulation of ${\beta}-carboline$ alkaloids (harmaline and harmine) and steroidal saponin (diosgenin) in non-embryogenic and embryogenic callus culture derived from leaf explant was compared with root, leaf, stem, and fruit of the mother plant. The embryogenic callus accumulated equivalent amounts of harmaline ($66.4{\pm}0.5{\mu}g/g$ dry weight), harmine ($82.7{\pm}0.6{\mu}g/g$ dry weight), and diosgenin ($170.7{\pm}1.0{\mu}g/g$ dry weight) to that of the fruit of T. terrestris. The embryogenic callus culture of this species might offer a potential source for production of important pharmaceuticals.

High Frequency Shoot Regeneration from leaf Explants of Cucumber

  • Seo, Seung-Hee;Bai, Dong-Gyu;Park, Hyeon-Yong
    • Journal of Plant Biotechnology
    • /
    • 제2권1호
    • /
    • pp.51-54
    • /
    • 2000
  • Leaf explants of the cucumber (Cucumis sativus L.) were cultured on Murashige and Skoog's (MS) medium supplemented with various concentrations of $\alpha$-naphthalene acetic acid (NAA) and 6-benzylaminopurine (BAP). Direct shoot orgnogenesis as well as callus formation with somatic embryos and multiple shoots was observed from leaf explants of cvs. Shinhukjinju and Chungjang. The highest frequency of shoot formation 80% was observed on MS medium supplemented with NAA/BAP (5.0 ${\mu}{\textrm}{m}$/2.5 ${\mu}{\textrm}{m}$), with explants forming 3-7 shoots. Shoots formation occured within 3 to 4 weeks. Only one subculture of calli was required for plant regeneration on normal growth regulator-free medium. Plantlets transferred to soil developed into plants of normal appearance, which flowered and set fruits.

  • PDF

In Vitro Propagation of Medicinal Herbs in Korea

  • An, Chanhoon;Song, Jeongho
    • Journal of Forest and Environmental Science
    • /
    • 제34권1호
    • /
    • pp.77-81
    • /
    • 2018
  • Mass production of forest medicinal plants is related to quality control of raw medicinal materials. Plant tissue culture is an important technology to produce high-quality plant materials. Numerous factors are reported to influence the success of in vitro regeneration of medicinal plants. Embryogenesis is known to be the most effective techniques and it has developed in some medicinal plant species. Various in vitro cultural condition for direct and/or indirect somatic embryogenesis systems have developed in Epimedium koreaum, Bupleurum falcatum, Paeonia lactiflora, Chrysanthemum zawadskii, Houttuynia cordata etc. In this study, we provide the present statue and information of in vitro propagation techniques that is able to apply as an efficient system for rootstock propagation system of forest medicinal plants.

Regeneration from Storage Root Disk Culture of Purple Sweet Potato

  • Park, Hyejeong;Park, Hyeonyong
    • 한국자원식물학회지
    • /
    • 제28권3호
    • /
    • pp.363-369
    • /
    • 2015
  • Sweet potato has low regeneration capacity, which is a serious obstacle for the fruitful production of transgenic plants. Simple and rapid regeneration method from storage root explants of purple sweet potato (Ipomoea batatas L.) was investigated. The embryogenic callus was observed from 4 cultivars and its highest rate was induced at 1 μM 2,4-D after 5 weeks of culture. Result revealed that a low concentration of 2,4-D and low light intensity was important factors for embryogenic callus formation. After subculture on medium with 5 μM ABA for 4 days, subsequently, occurred the regeneration of shoots within 4 weeks when these embryogenic callus was transferred onto the MS hormone free medium. Regenerated shoots were developed into platelets, and grown normal plants in the greenhouse. We developed a simple and quickly protocol to regenerate plantlets in storage root explants of purple sweet potato. This regeneration system will facilitate tissue culture and gene transfer research of purple sweet potato.

배추 청방약근${\times}$무우 울산재래의 속간잡동에 대한 세포유전학적 연구

  • 한창열
    • Journal of Plant Biology
    • /
    • 제5권3호
    • /
    • pp.21-24
    • /
    • 1962
  • Intergeneric crossings between the inbred line of Brassica pekinensis var. Chongbangkokun and inbred line of Raphanus sativus var. Oolsanjaelae were made using Brassica as female plant, and obtained two individuals of intergeneric hybrids. Morphological characters of the two F1 hybrids are mostly intermediate of the two parental species, and their somatic chromosome number is 19. Meiotic behaviors of the parental plants were normal, while those of F1 plants were extremely irregular. The mean pairing frequencies per cell of hybrids are 1.09II+16.811(examined in May), and 1.76II+15.47i(examined in June). Majority of the pollen grain of parent species are normal, whereas those of F1's are invariably abortive. No seed setting was obtained in the hybrid plants left in the open field.

  • PDF

Myo-inositol increases the plating efficiency of protoplast derived from cotyledon of cabbage (Brassica oleracea var. capitata)

  • Jie, Eun-Yee;Kim, Suk-Weon;Jang, Hye-Rim;In, Dong-Su;Liu, Jang-Ryol
    • Journal of Plant Biotechnology
    • /
    • 제38권1호
    • /
    • pp.69-76
    • /
    • 2011
  • This study describes the effect of myo-inositol on sustained cell division and plant regeneration from cotyledon-derived protoplast of cabbage (Brassica oleracea var. capitata). Freshly isolated protoplasts were cultured in modified Murashige and Skoog (MS) medium removed ammonia ions and containing $0.4\;mg\;l^{-1}$ thiamine HCl, $100\;mg\;l^{-1}$ myo-inositol, $2\;mgl^{-1}$ 2,4-D, $0.5\;mgl^{-1}$ BA, $30\;gl^{-1}$ sucrose and several concentrations of myo-inositol (2, 4, 6, 8, 10% (w/v)) as an osmotic stabilizer. After 3 weeks of culture in the dark at $25^{\circ}C$, the plating efficiency of cabbage protoplasts reached to $22.5{\pm}2.9%$ when cultured in modified MS medium supplemented with $2\;mgl^{-1}$ 2,4-D, $0.5\;mgl^{-1}$ BA, $30\;gl^{-1}$ sucrose and 8% (w/v) of myo-inositol at a density of $2{\times}10^5$ protoplasts/ml. Rapidly growing cell colonies after 3 weeks of culture were transferred to the same culture medium removed osmoticum. To induce shoot regeneration from calluses, calluses with about 2 mm in diameter were transferred to the MS medium containing $2\;mgl^{-1}$ BA and $0.5\;mgl^{-1}$ NAA. After further three weeks of incubation onto the medium in the light, green shoots were formed on the surface of calluses at a frequency of 30%. Upon transfer to half-strength MS basal medium, roots were formed onto the bottom of regenerated shoots without auxin treatments. These regenerated plantlets were successfully acclimatized to soil transfer, grown to normal mature plants. The cabbage protoplast culture system established in this study could be applied for production of somatic hybrids or cybrids by asymmetric protoplast fusion and mass proliferation of elite somatic clones of cabbage.