• Title/Summary/Keyword: solvent molecules on surface

Search Result 26, Processing Time 0.021 seconds

Scanning Tunneling Microscopy Study of Alcohol Adsorption on NiAl(110) Deposited by Pulsed Injection

  • Choi, Eun-Yeoung;Lee, Youn-Joo;Lyo, In-Whan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.353-353
    • /
    • 2010
  • Alcohol is a vesatile polar solvent for molecules. As a preparation to deposit large molecules, we studied interaction of solvent molecules on metallic surface. in this work, we report on methanol adsorption on NiAl(110) with scanning tunneling microscopy (STM). These alcohol solvent molecules were deposited by a pulse injection method suitable for deposition of thermally unstable molecules. The injection of liquid alcohol onto the substrate in UHV was performed by using a high-speed solenoid valve with the back-pressure reduced down to 100 Torr. This technique allowed precise control over the amount of dosing of molecules to less than 1 L. Alcohol-induced features, attributed to methoxy, were found on bare NiAl(110) surface.

  • PDF

끓는점 오름 현상에 대한 학생, 예비교사, 화학교사의 개념 분석 (Conception Analysis of Students, Pre-service Teachers and Chemistry Teachers on Boiling Point Elevation)

  • 윤희숙;정대홍
    • 한국과학교육학회지
    • /
    • 제26권7호
    • /
    • pp.805-812
    • /
    • 2006
  • 본 연구에서는 끓는점 오름에 대한 고등학교 화학 교과서의 기술 양식과 고등학생, 예비교사, 고등학교 화학교사의 이해에 대하여 조사하였다. 6차와 7차 교육과정에 근거하여 개발된 고등학교 화학 II 교과서를 분석하였고 고등학생과 예비교사, 화학교사의 개념은 설문지를 통해 얻었다. 끓는점 오름의 원인에 대한 교과서의 설명 유형은 '표면의 용매 입자수의 감소', '용매-용질간의 인력', 그리고 '표면 입자수의 감소와 용매-용질간의 인력'등의 세 가지 유형으로 분석되었다. 개념조사 결과 '용매-용질간의 인력'을 끓는점 오름의 원인으로 인식하는 학생과 예비교사, 화학교사의 비율이 높았다. 대상자들은 끓는점 오름을 설명하기 위하여 엔트로피 개념보다 엔탈피 개념을 선호하는 경향이 있었고, 그 원인을 분석하기 위하여 사후 인터뷰를 실시하였다.

The Influence of Dielectric Constant on Ionic and Non-polar Interactions

  • Hwang, Kae-Jung;Nam, Ky-Youb;Kim, Jung-Sup;Cho, Kwang-Hwi;Kong, Seong-Gon;No, Kyoung-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권1호
    • /
    • pp.55-59
    • /
    • 2003
  • This work is focused on analyzing ion-pair interactions and showing the effect of solvent induced inter-atomic attractions in various dielectric environments. To estimate the stability of ion-pairs, SCI-PCM ab initio MO calculations were carried out. We show that the solvent-induced attraction or ‘cavitation' energy of the ion-pair interactions in solution that arises mainly from the stabilization of the water molecules by the generation of an electrostatic field. In fact, even the strong electrostatic interaction characteristic of ion-pair interactions in the gas phase cannot overcome the destabilization or reorganization of the water molecules around solute cavities that arise from cancellation of the electrostatic field. The solvent environment, possibly supplemented by some specific solvent molecules, may help place the solute molecule in a cavity whose surroundings are characterized by an infinite polarizable dielectric medium. This behavior suggests that hydrophobic residues at a protein surface could easily contact the side chains of other nearby residues through the solvent environment, instead of by direct intra-molecular interactions.

양모의 저온 염색(1) - 용해도 파라미터$(\delta)$를 중심으로 - (Dyeing of Wool at Low Temperature - focusing on solubility parameter$(\delta)$ -)

  • 도성국
    • 한국염색가공학회지
    • /
    • 제15권6호
    • /
    • pp.55-62
    • /
    • 2003
  • Wool fabrics were dyed with the aqueous solution of C. I. Red Acid 114 mixed with methanol dissolving three kinds of barely water soluble ketones, acetophenone, 2-pentanone, and 3-pentanone. The steric hinderance and the orientation of the bigger hydrophobic part of the solvated dye molecules to the fiber slowed down the dying rate, however, loosening the wool molecule, say a little swelling, disaggeregating the dye molecules, and attaining the higher dye concentration on the fiber surface by the added solvents increased the amount of dye on the fabric. The higher concentration or/and the higher dyeing temperature helped loosen fiber molecules and made it easier for the solvated dye molecules to penetrate into the inside of the fiber. Acetophenone, the most influential solvent used, showed that the ability to loosen fiber molecules was the most important of all the three positive solvent actions mentioned above. The considered mechanism provided before reflected the fact that the dye uptake on the fabric dyed with the solvents included, except for 0.034M and 0.051M of acetophenone, was even lower than that without any solvents at $50^\circ{C}$, but all the solvents added to the dye bath increased the dye uptake on the fiber at $70^\circ{C}$.

용매 극성도의 이론적 예측 연구 (An ab Initio Predictive Study on Solvent Polarity)

  • 박민규;조수경
    • 한국군사과학기술학회지
    • /
    • 제11권3호
    • /
    • pp.154-160
    • /
    • 2008
  • We investigated molecular polarity by using theoretical means and comparing empirical solvent polarity. Our approach employed electrostatic potentials at the molecular surface calculated by density functional methods. A number of molecular descriptors related to molecular polarities were computed from molecular surface electrostatic potentials. Among computed molecular descriptors, the most positive electrostatic potential provided the best correlation with the empirical solvent polarities. A regression equation was developed in order to predict molecular polarities of molecules whose experimental solvent polarities were unknown. The new regression equations were utilized in estimating solvent polarities of cubane derivatives which are considered important precusors of high-energy density meterials.

A Study of the Retention Behavior of Proteins in High-Performance Liquid Chromatography(Ⅰ): The Effect of Solvent and Temperature on Retention Behavior of Proteins in Reversed-Phase Chromatography

  • Dai Woon Lee;Byung Yun Cho
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권4호
    • /
    • pp.510-514
    • /
    • 1993
  • The retention behavior of proteins was investigated by using reversed-phase chromatography (RPC), comparing to the retention behavior of small molecules in RPC. The evaluation was carried out on a SynChropak RP-P($C_{18}$) column with 0.1% aq. TFA-organic solvent modifier such as acetonitrile, isopropanol, and ethanol. The Z value (the number of solvent molecules required to displace the solute from the surface) was a general index for the characterization of protein retention as a function of organic concentration over a range of temperature between 5 and 70$^{\circ}C$. Van't Hoff plots provided the basis for evaluating the enthalpic and entropic changes associated with the interaction between protein and the stationary phase. Z values did not change significantly at the range of temperature showing the consistent ${\Delta}H^{\circ}$ and ${\Delta}S^{\circ}$ values. From these investigation, it was concluded that the retention behavior of proteins in RPC was able to be predicted by the retention parameters applied to small molecules. Furthermore, myoglobin and hemoglobin in RPC as stated above showed a similar retention behavior regardless of their molecular weights.

Theoretical Study on Hydrophobicity of Amino Acids by the Solvation Free Energy Density Model

  • Kim, Jun-Hyoung;Nam, Ky-Youb;Cho, Kwang-Hwi;Choi, Seung-Hoon;Noh, Jae-Sung;No, Kyoung-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권12호
    • /
    • pp.1742-1750
    • /
    • 2003
  • In order to characterize the hydrophobic parameters of N-acetyl amino acid amides in 1-octanol/water, a theoretical calculation was carried out using a solvation free energy density model. The hydrophobicity parameters of the molecules are obtained with the consideration of the solvation free energy over the solvent volume surrounding the solute, using a grid model. Our method can account for the solvent accessible surface area of the molecules according to conformational variations. Through a comparison of the hydrophobicity of our calculation and that of other experimental/theoretical works, the solvation free energy density model is proven to be a useful tool for the evaluation of the hydrophobicity of amino acids and peptides. In order to evaluate the solvation free energy density model as a method of calculating the activity of drugs using the hydrophobicity of its building blocks, the contracture of Bradykinin potentiating pentapeptide was also predicted from the hydrophobicity of each residue. The solvation free energy density model can be used to employ descriptors for the prediction of peptide activities in drug discovery, as well as to calculate the hydrophobicity of amino acids.

OLED를 위한 저분자 재결정 방지 코팅 기술 (Recrystallization-Free Coating of Small Molecules for OLEDs)

  • 홍기영;이진영;신동균;박종운;서화일
    • 반도체디스플레이기술학회지
    • /
    • 제15권2호
    • /
    • pp.38-42
    • /
    • 2016
  • We investigate the solution coating process of organic small molecules that are easily recrystallized in a solvent. The spin-coated films of small molecule N,N'-diphenly-N,N'-bis(1,1'-biphenyl)-4,4'-diamine (NPB) exhibit many aggregations on the surface and thus poor surface morphology. To tackle it, we have added a chain-entangled polymer poly(N-vinylcarbazole) (PVK) into the NPB solution. It is found that a small amount of PVK indeed prohibits the recrystallization of NPB in a solvent. By the addition of PVK (30 wt%), the peak-to-peak roughness of the films is reduced from 262 nm down to 2.7 nm, which is even lower than that (~5.1 nm) of the polymer film. It is also demonstrated that OLED with the PVK-mixed NPB film shows higher current and power efficiencies, compared to OLED with the NPB or PVK film. It is attributed that the addition of PVK into NPB suppresses the occurrence of leaky channels induced by the recrystallization phenomenon.

Transition-State Structures for Solvolysis of Methanesulfonyl Chloride

  • 양기열;강금덕;구인선;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권11호
    • /
    • pp.1186-1191
    • /
    • 1997
  • Solvolyses of methanesulfonyl chloride (CH3SO2Cl) in water and methanol have been studied theoretically using ab initio self-consistent reaction field (SCRF) molecular orbital method. All stationary structures including transition state on the potential energy surface in solution have been found and compared with the gas phase structures. The overall reaction occurs via a concerted SN2 mechanism with a non-cyclic trigonal bipyramidal transition state, and the activation barrier is lowered significantly in solution. The transition state for the hydrolysis reaction is looser than that for the methanolysis reaction, and this is in accord with the experimental findings that an SN2 type mechanism, which is shifted toward an SN1 process or an SAN process in the hydrolysis and alcoholysis reaction, respectively, takes place. The catalytic role of additional solvent molecules appears to be a purely general-base catalysis based on the linear transition structures. Experimental barrier can be estimated by taking into account the desolvation energy of nucleophile in the reaction of methanesulfonyl chloride with bulk solvent cluster as a nucleophile.

Study on the Controlled Gel Formation and Photochromic Properties of a New Cholesterol-bridge-naphthopyran Dyad

  • Sun, Lin;Wang, Guang;Liu, Longbo;Wang, Ai Xia
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권5호
    • /
    • pp.1343-1348
    • /
    • 2014
  • A cholesterol-bridge-naphthopyran dyad (NP-MCB) was designed and synthesized. NP-MCB can readily self-assemble into gels under ultrasound-radiation in several organic solvents and the formed gels easily transfer to solution by heat. This reversible process can be repeated many times. Scanning Electron Microscopy results showed that the morphologies of all formed xerogels in different solvents have fibrillar microstructure. The gels formation was due to energy and pressure afforded by the ultrasonic process, resulting in formation of molecular hydrogen bonding and molecular aggregation. NP-MCB displayed the normal photochromism both in solution and gel states. The kinetic results confirm that the colored merocyanine in gels show a slower fading speed than that in solution due to the compact aggregation of NP-MCB molecules in gels. The xerogel film formed in polar gelling solvent had large surface wettability than that in nonpolar gelling solvent.