• Title/Summary/Keyword: solvation effect

Search Result 66, Processing Time 0.038 seconds

Nucleophilic Substitution at a Carbonyl Carbon Atom (IX). Solvolysis of 2-Furoyl Chloride and 2-Thenoyl Chloride in Binary Mixtures (카르보닐탄소원자의 친핵성 치환반응 (제9보). 이성분 혼합용매에서 2-염화테노일 및 2-염화퓨로일의 가용매분해반응)

  • Son Jin-Eon;Sang-Kee Yoon;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.339-348
    • /
    • 1979
  • The kinetics of the solvolysis of 2-furoyl chloride and 2-thenoyl chloride in $MeOH-H_2O,\;EtOH-H_2O,\;(Me)_2CO-H_2O,\;MeCN-H_2O$ and MeCN-MeOH has been investigated. The rates were faster in protic solvents than in aprotic solvents. This was caused by the bond breaking of leaving group through hydrogen-bonding solvation of protic solvents. In MeCN-M$\'{e}$OH the rate in MeOH rich solvents was faster than in MeCN rich solvents by the specific solvation of alcoholic hydrogen and there was a maximum rate of reaction at MeOH mole fraction of 0.8. The reaction rates of solvolysis were considerably slower than those of benzoyl chloride owing to the electron withdrawing effect of thienyl and furyl groups. It was concluded that solvolytic reaction proceeds via a dissociative $S_N2$ mechanism in which bond-breaking precedes bond-formation at the transition state.

  • PDF

The Rheology of the Silica Dispersion System with Single and Mixed Solvent (단일 및 혼합 용매계 실리카 분산체의 점도 특성 및 유변학적 거동)

  • Ahn, Jae-Beom;Noh, Si-Tae
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.685-691
    • /
    • 2009
  • Dispersions of fumed silica are made in 6 kinds of mono-solvents and mixed solvents which have hydroxyl group, non hydroxyl group, different polarity, and different molecular size. The viscosity and rheology behaviors of the each dispersion are investigated according to the viewpoint of solvent characteristic. The silica dispersion in polar solvent with hydroxyl group is stable and low viscous sol. The silica dispersion in non-polar solvent with non-hydroxyl group is high viscous gel. When the solvent with hydroxyl group is added to the silica dispersions with non-polar solvents, they show the reduction of viscosity with solvent content. They have minimum critical content which shows no viscosity change. The minimum critical solvent content is decreased according to the polarity of solvents with no hydroxyl group. The solvation layer which is formed on the silica surface through hydrogen bonding between hydroxyl-containing solvent and the silanol group of silica surface is the reason of stable and low viscous sol. In case of non-polar solvent, silanol on adjacent silica particles interacted directly by hydrogen bonding show high viscous and flocculated gel.

Stoichiometric Solvent Effect on SN1 Solvolytic Reactivity Accounting for Phenomenon of Maximum Rates in Methanol-Nitromethane Mixtures

  • Ryu, Zoon-Ha;Choi, Su-Han;Lim, Gui-Taek;Sung, Dea-Dong;Bentley, T. William
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1346-1350
    • /
    • 2004
  • Pseudo-first order rate constants $(k_{obs})$ are reported for the following solvolyses in approximately isodielectric mixtures: 3- and 4-methoxybenzyl chloride, bromo- and chlorodiphenylmethane, and 4-chloro-, 4,4'-dichloro and 4-methyl-chlorodiphenylmethane in 0-80% v/v nitromethane-methanol mixtures; and bromo- and chlorodiphenylmethane and 4-methyl-chlorodiphenylmethane in various acetonitrile-methanol mixtures (in the range 0-50% v/v) at$25^{\circ}C.$ These data, and literature data for t-butyl halides (Cl, Br, and I), and for p-methoxybenzoyl chloride, show rate maxima in solvent compositions of ca. 30% aprotic cosolvent, explained by a stoichiometric solvent effect on electrophilic solvation. Linear relationships are observed between $(k_{obs})/[MeOH]^2$ and [AP]/[MeOH], where [AP] refers to the molar concentration of aprotic cosolvent. The results are consistent with competing third order contributions to $k_{obs}$, $k_{MM}[MeOH]^2$ with hydrogen-bonded methanol as electrophile, and $k_{MAP}[MeOH][AP]$ with hydrogen-bonding disrupted by the aprotic solvent.

Structural Arrangement of Water Molecules around Highly Charged Nanoparticles: Molecular Dynamics Simulation

  • Kim, Eunae;Yeom, Min Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1501-1505
    • /
    • 2014
  • Molecular dynamics simulations were performed to understand the structural arrangement of water molecules around highly charged nanoparticles under aqueous conditions. The effect of two highly charged nanoparticles on the solvation charge asymmetry has been examined. We calculated the radial distribution functions of the components of water molecules around nanoparticles which have four charge types at two different salt concentrations. Even though the distributions of water molecules surrounding a sodium ion and a chloride ion are hardly affected by the charges of nanoparticles and the salt concentrations, those around highly charged nanoparticles are strongly influenced by the charges of nanoparticles, but hardly by the charges of nanoparticles and salt concentrations. We find that the distributions of hydrogen atoms in water molecules around one highly charged nanoparticle are dependent on the magnitude of the nanoparticle charge.

Kinetic Studies on Halogen Exchange of Phenacyl Halides

  • Park, Jin-Ha
    • Nuclear Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.20-25
    • /
    • 1973
  • Kinetics of halogen exchange reactions of phenacyl halides using radioisotope tracer halide ions in anhydrous acetone have been studied. The reactions wore believed to be SN2 processes and the orders of relative nucleophilicity of halide ions were Cl->I->Br- for the phenacyl chloride and I->Cl->Br- for the phenacyl bromide. These were interpreted in terms of solvation effect of halide ions and HSAB principle.

  • PDF

Solvent Effects on the Electronic Spectra of Some Heterocyclic Azo Dyes

  • Behera, Pradipta Kumar;Xess, Anita;Sahu, Sachita
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.610-616
    • /
    • 2014
  • The influence of solvent polarity on the absorption spectra of some synthesized azo dye with heterocyclic moieties and ${\beta}$-naphthol (1-3) have been investigated using a UV-Visible spectrophotometer. The spectral characteristics of the azo dyes (1-3) in different solvents at room temperature were analyzed. The solvatochromic empirical variables like ${\pi}^*$, ${\alpha}$, and ${\beta}$ have been used to discuss the solvatochromic behaviour of the dyes and to evaluate their contributions to the solute-solvent interactions. A multi-parameter regression model for quantitative assessment of the solute/solvent interaction and the absorption has been used to explain the solvent effect on azo dyes (1-3).

Kinetic Studies on Halogen Exchange Reactions of Phenethyl Chloride in Acetone

  • Kim, Shi-Choon;Cheun, Young-Gu;Sakong Yul
    • Nuclear Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.25-29
    • /
    • 1975
  • Kinetics of halogen exchange reaction of 1-phenthyl chloride and 2-phenethyl chloride using radioisotopic tracer halide ions in acetone have been studied. The reactions were belived to be S$_{N}$2 processes and the orders of relative nucleophilicity of halide ions were Cl->Br->I-. The reaction rate is slower than that of benzyl chloride. These were interpreted in terms of solvation effect of halide ions and HSAB principle.

  • PDF

The Pressure Effect on the Ionic Association of the 3,5,N-trimethyl Pyridinium Iodide in Ethanol-Water Mixture

  • Jong-Gi Jee;Young Hwa Lee;Kyung-Hee Lee;Oh Cheun Kwun
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.3
    • /
    • pp.112-117
    • /
    • 1984
  • The association constants (K) of 3,5,N-trimethyl pyridinium iodide in 95 volume percent ethanol-water mixed solvent were determined by a modified UV and conductance method at $25^{\circ},\;30{\circ},\;40{\circ}\;and\;50{\circ}C$ over the pressure range 1 to 2000 bars. The association process is enhanced with increasing pressure and decreasing temperature. From K values, we obtained the total partial molar volume change (${\Delta}V$) and some thermodynamic parameters. The electrostriction volume (${\Delta}V_{el}$) and intrinsic volume (${\Delta}V_{in}$) were also evaluated. The values of ${\Delta}V,\;{\Delta}V_{el},\;{\Delta}V_{in}$ are negative, negative and positive, respectively, and the absolute values of all these three decrease with increasing pressure and temperature. The ion-pair size (a) were varied 3 to 6 ${\AA}$, with pressure and temperature. The solvation number (n) decreased from 2 to 0.5 with increasing temperature.

Monte Carlo Simulation Study of Solvent Effect on Selectivity of 18-Crown-6 to between La3+ and Nd3+ Ion

  • Kim, Hag-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.751-756
    • /
    • 2003
  • We have investigated the solvent effects on Δlog $K_s$ (the difference of stability constant of binding) and the relative free energies of binding of $La^{3+} and Nd^{3+}$ ions to 18-crown-6 by a Monte Carlo simulation of statistical perturbation theory (SPT) in diverse solvents. We compared relative binding Gibbs free energies and the differences in stability constant (Δlog $K_s$) of binding of $La^{3+} and Nd^{3+}$ ions to 18-crown-6 in $CH_3OH$ in this study with the experimental. There is a good agreement between our study and the experimental. We noted that Borns function of the solvents, the electron pair donor properties of the solvent, the radii of host and guest and the differences in solvation dominate the differences in the stability constant (Δlog $K_s$) as well as the relative free energies of binding of TEX>$La^{3+} to Nd^{3+}$ ions to 18-crown-6. The results of this study appear promising for providing the association properties of crown ethers with alkaline earth metals among polar solvents and the less polar or non-polar solvents.

The α-Effect in Nucleophilic Substitution Reactions of Y-Substituted-Phenyl X-Substituted-Cinnamates with Butane-2,3-dione Monoximate

  • Kim, Min-Young;Son, Yu-Jin;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2877-2882
    • /
    • 2013
  • Second-order rate constants ($k_{Ox^-}$) have been measured spectrophotometrically for nucleophilic substitution reactions of 4-nitrophenyl X-substituted-cinnamates (7a-7e) and Y-substituted-phenyl cinnamates (8a-8e) with butane-2,3-dione monoximate ($Ox^-$) in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The Hammett plot for the reactions of 7a-7e consists of two intersecting straight lines while the Yukawa-Tsuno plot exhibits an excellent linearity with ${\rho}_X$=0.85 and r=0.58, indicating that the nonlinear Hammett plot is not due to a change in the rate-determining step but is caused by resonance stabilization of the ground state (GS) of the substrate possessing an electron-donating group (EDG). The Br${\o}$nsted-type plot for the reactions of Y-substituted-phenyl cinnamates (8a-8e) is linear with ${\beta}_{lg}$ = -0.64, which is typical of reactions reported previously to proceed through a concerted mechanism. The ${\alpha}$-nucleophile ($Ox^-$) is more reactive than the reference normal-nucleophile ($4-ClPhO^-$). The magnitude of the ${\alpha}$-effect (i.e., the $k_{Ox^-}/k_{4-ClPhO^-}$ ratio) is independent of the electronic nature of the substituent X in the nonleaving group but increases linearly as the substituent Y in the leaving group becomes a weaker electron-withdrawing group (EWG). It has been concluded that the difference in solvation energy between $Ox^-$ and $4-ClPhO^-$ (i.e., GS effect) is not solely responsible for the ${\alpha}$-effect but stabilization of transition state (TS) through a cyclic TS structure contributes also to the Y-dependent ${\alpha}$-effect trend (i.e., TS effect).