Browse > Article

The Rheology of the Silica Dispersion System with Single and Mixed Solvent  

Ahn, Jae-Beom (Department of Chemical Engineering, College of Engineering Sciences, Hanyang University)
Noh, Si-Tae (Department of Chemical Engineering, College of Engineering Sciences, Hanyang University)
Publication Information
Applied Chemistry for Engineering / v.20, no.6, 2009 , pp. 685-691 More about this Journal
Abstract
Dispersions of fumed silica are made in 6 kinds of mono-solvents and mixed solvents which have hydroxyl group, non hydroxyl group, different polarity, and different molecular size. The viscosity and rheology behaviors of the each dispersion are investigated according to the viewpoint of solvent characteristic. The silica dispersion in polar solvent with hydroxyl group is stable and low viscous sol. The silica dispersion in non-polar solvent with non-hydroxyl group is high viscous gel. When the solvent with hydroxyl group is added to the silica dispersions with non-polar solvents, they show the reduction of viscosity with solvent content. They have minimum critical content which shows no viscosity change. The minimum critical solvent content is decreased according to the polarity of solvents with no hydroxyl group. The solvation layer which is formed on the silica surface through hydrogen bonding between hydroxyl-containing solvent and the silanol group of silica surface is the reason of stable and low viscous sol. In case of non-polar solvent, silanol on adjacent silica particles interacted directly by hydrogen bonding show high viscous and flocculated gel.
Keywords
silica; silica dispersion; rheology; hydrogen bonding; solvation effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Gabriele, L. Thorsten, V. Vlasta, F. Stephanie, and M. Jurgen, Prog. Org. Coat., 45, 139 (2002)   DOI   ScienceOn
2 R. D. Harding, J. Colloid Interface Sci., 35, 172 (1971)   DOI   ScienceOn
3 Z. Kiraly, L. Turi, I. Dekany, K. Bean, and B. Vicent, Colloid Polym Sci., 247,779 (1996)
4 G. Peschel, P. Belouschek, M. M. Muller, R. Muller, and R. Konig, Colloid Polym. Sci., 260, 444 (1982)   DOI   ScienceOn
5 S. R. Raghavan and S. A. Khan, J. Rheol., 39, 1311 (1995)   DOI   ScienceOn
6 M. Ettlinger, T. Ladwig, and A. Weise, Prog. Org. Coat., 40, 31 (2000)   DOI   ScienceOn
7 W. B. Russel, D. A. Saville, and W. R. Schowater, Colloidal Dispersions, Cambridge University Press, Cambridge (1989)
8 S. A. Greenberg, R. Jarnutowski, and T. N. Chang, J. Colloid Sci., 20, 20 (1965)   DOI
9 I. Motoyuki, T. Mayumi, and K. Hidehiro, J. Colloid Interface Sci., 305, 315 (2007)   DOI   ScienceOn
10 C. W. Macosko, Rheology : Principles, Measurements and Application, VCH Publishers, New York (1994)
11 M. Korn, E. Killmann, and J. Eisenlauer, J. Colloid Interface Sci., 76, 7 (1980)   DOI   ScienceOn
12 Th. F. Tadros, Adv. Colloid Interface Sci., 68, 97 (1996)   DOI
13 Degussa Technical Bulletins: Basic Characteristics of Aerosol (No.11); Degussa Corp., Akron, OH (1993)
14 R. Benitez, S. Contreras, and J. Goldfarb, J. Colloid Interface Sci., 36, 146 (1971)   DOI   ScienceOn
15 J. P. Chapel, Langmuir., 10, 4237 (1994)   DOI   ScienceOn
16 L. H. Allen and E. Matjevic, J. Colloid Interface Sci., 31, 287 (1969)   DOI   ScienceOn
17 D. T. Atkins and B. W. Ninham, Colloids Surf., 129, 23 (1997)   DOI   ScienceOn
18 S. R. Raghavan, S. A. Khan, and H. J. Walls, Langmuir, 16, 7920 (2000)   DOI   ScienceOn
19 B. Vincent, Z. Kiraly, S. Emmett, and A. Beaver, Colloids Surf., 49, 121 (1990)   DOI   ScienceOn