• Title/Summary/Keyword: solution verification

검색결과 441건 처리시간 0.025초

Closed-form and numerical solution of the static and dynamic analysis of coupled shear walls by the continuous method and the modified transfer matrix method

  • Mao C. Pinto
    • Structural Engineering and Mechanics
    • /
    • 제86권1호
    • /
    • pp.49-68
    • /
    • 2023
  • This study investigates the static and dynamic structural analysis of symmetrical and asymmetrical coupled shear walls using the continuous and modified transfer matrix methods by idealizing the coupled shear wall as a three-field CTB-type replacement beam. The coupled shear wall is modeled as a continuous structure consisting of the parallel coupling of a Timoshenko beam in tension (with axial extensibility in the shear walls) and a shear beam (replacing the beam coupling effect between the shear walls). The variational method using the Hamilton principle is used to obtain the coupled differential equations and the boundary conditions associated with the model. Using the continuous method, closed-form analytical solutions to the differential equation for the coupled shear wall with uniform properties along the height are derived and a numerical solution using the modified transfer matrix is proposed to overcome the difficulty of coupled shear walls with non-uniform properties along height. The computational advantage of the modified transfer matrix method compared to the classical method is shown. The results of the numerical examples and the parametric analysis show that the proposed analytical and numerical model and method is accurate, reliable and involves reduced processing time for generalized static and dynamic structural analysis of coupled shear walls at a preliminary stage and can used as a verification method in the final stage of the project.

Multi-Objective Optimization Study of Blast Wall Installation for Mitigation of Damage to Hydrogen Handling Facility (수소 취급시설 피해 저감을 위한 방호벽 설치 다목적 최적화 연구)

  • Se Hyeon Oh;Seung Hyo An;Eun Hee Kim;Byung Chol Ma
    • Journal of the Korean Society of Safety
    • /
    • 제38권6호
    • /
    • pp.9-15
    • /
    • 2023
  • Hydrogen is gaining attention as a sustainable and renewable energy source, potentially replacing fossil fuels. Its high diffusivity, wide flammable range, and low ignition energy make it prone to ignition even with minimal friction, potentially leading to fire and explosion risks. Workplaces manage ignition risks by classifying areas with explosive atmospheres. However, the effective installation of a blast wall can significantly limit the spread of hydrogen, thereby enhancing workplace safety. To optimize the wall installation of this barrier, we employed the response surface methodology (RSM), considering variables such as wall distance, height, and width. We performed 17 simulations using the Box-Behnken design, conducted using FLACS software. This process yielded two objective functions: explosion likelihood near the barrier and explosion overpressure affecting the blast wall. We successfully achieved the optimal solution using multi-objective optimization for these two functions. We validated the optimal solution through verification simulations to ensure reliability, maintaining a margin of error of 5%. We anticipated that this method would efficiently determine the most effective installation of a blast wall while enhancing workplace safety.

Verification of mechanical failure mode through corrosion test of a pump for soil sterilizer injection

  • Han-Ju Yoo;Jooseon Oh;Sung-Bo Shim
    • Korean Journal of Agricultural Science
    • /
    • 제50권4호
    • /
    • pp.817-828
    • /
    • 2023
  • Deteriorating soil physical properties and increasing soil pathogens due to the continuous cultivation of field crops are the leading causes of productivity deterioration. Crop rotation, soil heat treatment, and chemical control are used as pest control methods; however, each has limitations in wide application to domestic agriculture. In particular, chemical control requires improvement due to direct exposure to sterilizing solution, odor, and high-intensity work. To improve the overall domestic agricultural environment, the problems of time and cost, such as field maintenance and cultivation scale, must be addressed; therefore, mechanization technology for chemical control must be secured to derive improvement effects in a short period. Most related studies are focused on the control effect of the DMDS (dimethyl disulfide) sterilizer, and research on the performance of the sterilization spray device has been conducted after its introduction in Korea, but research on the corrosion suitability of the material is lacking. This study conducted a corrosion test to secure the corrosion resistance of a soil sterilizer injection pump, and a mechanical failure mode by corrosion by the material was established. The corrosion test comprised operation and neglect tests in which the sterilizing solution was circulated in the pump and remained in the pump, respectively. As a result of the corrosion test, damage occurred due to the weakening of the mechanical strength of the graphite material, and corrosion resistance to aluminum, stainless steel, fluororubber, and PPS (polyphenylene sulfide) materials was confirmed.

Optimization of Tank Model Parameters Using Multi-Objective Genetic Algorithm (II): Application of Preference Ordering (다목적 유전자알고리즘을 이용한 Tank 모형 매개변수 최적화(II): 선호적 순서화의 적용)

  • Koo, Bo-Young;Kim, Tae-Soon;Jung, Il-Won;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • 제40권9호
    • /
    • pp.687-696
    • /
    • 2007
  • Preference ordering approach is applied to optimize the parameters of Tank model using multi-objective genetic algorithm (MOGA). As more than three multi-objective functions are used in MOGA, too many non-dominated optimal solutions would be obtained thus the stakeholder hardly find the best optimal solution. In order to overcome this shortcomings of MOGA, preference ordering method is employed. The number of multi-objective functions in this study is 4 and a single Pareto-optimal solution, which is 2nd order efficiency and 3 degrees preference ordering, is chosen as the most preferred optimal solution. The comparison results among those from Powell method and SGA (simple genetic algorithm), which are single-objective function optimization, and NSGA-II, multi-objective optimization, show that the result from NSGA-II could be reasonalby accepted since the performance of NSGA-II is not deteriorated even though it is applied to the verification period which is totally different from the calibration period for parameter estimation.

A Study on Pollution Conditions and Management of Sand Flooring Related to Animal Feces - Nitrogen Analysis Method Development - (동물 분변으로 인한 모래 바닥재의 오염실태 및 관리 방안에 관한 연구 - 질소분석방법개발 -)

  • Jeong, Won-Gu;Ha, Ji-Young;Oh, Geun-Chan;Huh, In-Ryang;Choi, Seung-Bong
    • Journal of Environmental Health Sciences
    • /
    • 제46권6호
    • /
    • pp.646-654
    • /
    • 2020
  • Objectives: Users of parks or children's play facilities have pointed to pets' bowel movements as the most serious problem when using them. In prior studies, a very low detection rate of parasites (eggs) in sand flooring materials has been found. Even though feces have been identified, no parasites (eggs) have been detected. Method: A standard solution of nitrate nitrogen was used to verify the reliability of a new nitrogen analysis method. The linearity, precision, and accuracy of the nitrate nitrogen analysis method were verified. Using this method, the pollution distribution of the sand flooring material and the degree of pollution at each point were investigated. Results: As a result of the verification of the nitrogen analysis method, the linearity was found to be good at r2=0.999 when distilled water is mixed in a standard substance solution. The standard substance additive solution r2=0.968 was found to be good. Precision represented 0.01 to 0.06% RSD for peak height. The recovery rate was 92.4 to 104.0 percent, indicating high accuracy. According to the same method of analysis, the flooring material sand at a general amusement facility with the largest number of concealed spaces was nitrate nitrogen 6.1 times higher than at the entrance of the playground. Also, in a comparison between clean sand and sandy flooring, the average nitrogen concentration of the sand flooring material was 24.4-167 times higher than pure sand. Conclusions: As such, no parasites (eggs) were detected at all points under investigation, but the sand flooring was exposed to animal fecal contamination. Therefore, the management of nitrogenous components should allow accurate identification of animal fecal contamination so that the timing of sand replacement can be managed hygienically and safely.

Analysis of Chloride Content in Aqueous Solution and Mortar using Laser Induced Breakdown Spectroscopy (LIBS를 활용한 수용액과 모르타르 내 염화물량 분석)

  • Ryu, Hwa-Sung;Park, Won-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • 제21권3호
    • /
    • pp.189-194
    • /
    • 2021
  • LIBS has been attracting attention as an analytical method capable of real-time measurement without sample preparation. In this study, a Lab. scale LIBS device was fabricated to examine the applicability and reproducibility of LIBS in the analysis of chloride contents in mortar. The existing analysis method and LIBS analysis were performed simultaneously on the mortar test specimen with the chloride content adjusted. Compared to the chloride content condition of the mortar, the XRF and Potentiometric Titration results also showed a similar trend. As a result of LIBS analysis, chlorine ions were detected at a wavelength of 837.59 nm according to the chloride content condition. In order to improve the precision in various concentration ranges, the LIBS signal amplification of about 50 times through the electric field enhancement was implemented. Through the verification of the aqueous solution-based reproducibility, a high correlation between the LIBS signal strength and the Cl concentration was confirmed, and the possibility of applying LIBS to the durability diagnosis of concrete damage by chloride was confirmed.

Particle Contamination Control in the Cleanroom Production Line using Partition Check Method (클린룸 제조공정에서 공정분할평가법을 이용한 입자오염제어)

  • Lee, Hyeon-Cheol;Park, Jung-Il;Lee, Seong-Hun;Noh, Kwang-Chul;Oh, Myung-Do
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2338-2343
    • /
    • 2007
  • The practical studies on the method of particle contamination control for yield enhancement in the cleanroom were carried out. The method of the contamination control was proposed, which are composed of data collection, data analysis, improvement action, verification, and implement control. The partition check method for data collection and data analysis was used in the cellular phone module production lines. And this method was evaluated by the variation of yield loss between before and after improvement action. In case that the partition check method was applied, the critical process step was selected and yield loss reduction through improvement actions was observed. From these results, it is concluded that the partition check method is effective solution for particle contamination control in the cleanroom production lines.

  • PDF

Pacemaker safety verification with UPPAAL (UPPAAL을 이용한 인공 심장 박동기의 안전성 검사)

  • Ahn, So-Jin;Hwang, Dae-Yon;Choi, Jin-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(A)
    • /
    • pp.110-112
    • /
    • 2012
  • 정형기법은 소프트웨어 및 하드웨어 시스템의 요구사항을 모순, 모호함 없이 정확하게 명세하고 검증할 수 있는 방법으로, 안전성이 중요한 소프트웨어에 많이 적용되어 반드시 보장되어야 할 속성을 소프트웨어가 만족하는지 확인하는데 사용되고 있다. 본 논문은 정형기법 커뮤니티에서 선정한 여러 도전 과제 중 하나인 인공 심장 박동기(pacemaker)를 실시간 속성을 표현할 수 있는 정형기법 도구인 UPPAAL을 사용하여 모델링하고 주요 속성을 검증하였다. 이를 통해 실시간 속성으로 인해 명세 및 검증하기 힘든 소프트웨어에 정형기법을 적용하여 안전성을 확인할 수 있음을 보인다.

A generalized adaptive incremental approach for solving inequality problems of convex nature

  • Hassan, M.M.;Mahmoud, F.F.
    • Structural Engineering and Mechanics
    • /
    • 제18권4호
    • /
    • pp.461-474
    • /
    • 2004
  • A proposed incremental model for the solution of a general class of convex programming problems is introduced. The model is an extension of that developed by Mahmoud et al. (1993) which is limited to linear constraints having nonzero free coefficients. In the present model, this limitation is relaxed, and allowed to be zero. The model is extended to accommodate those constraints of zero free coefficients. The proposed model is applied to solve the elasto-static contact problems as a class of variation inequality problems of convex nature. A set of different physical nature verification examples is solved and discussed in this paper.

Front Points Tracking in the Region of Interest with Neural Network in Electrical Impedance Tomography

  • Seo, K.H.;Jeon, H.J.;Kim, J.H.;Choi, B.Y.;Kim, M.C.;Kim, S.;Kim, K.Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.118-121
    • /
    • 2003
  • In the conventional boundary estimation in EIT (Electrical Impedance Tomography), the interface between anomalies and background is expressed in usual as Fourier series and the boundary is reconstructed by obtaining the Fourier coefficients. This paper proposes a method for the boundary estimation, where the boundary of anomaly is approximated as the interpolation of front points located discretely along the boundary and is imaged by tracking the points in the region of interest. In the solution to the inverse problem to estimate the front points, the multi-layer neural network is introduced. For the verification of the proposed method, numerical experiments are conducted and the results indicate a good performance.

  • PDF