• Title/Summary/Keyword: solution verification

Search Result 438, Processing Time 0.03 seconds

SVM-Based Speaker Verification System for Match-on-Card and Its Hardware Implementation

  • Choi, Woo-Yong;Ahn, Do-Sung;Pan, Sung-Bum;Chung, Kyo-Il;Chung, Yong-Wha;Chung, Sang-Hwa
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.320-328
    • /
    • 2006
  • Using biometrics to verify a person's identity has several advantages over the present practice of personal identification numbers (PINs) and passwords. To gain maximum security in a verification system using biometrics, the computation of the verification as well as the storing of the biometric pattern has to take place in a smart card. However, there is an open issue of integrating biometrics into a smart card because of its limited resources (processing power and memory space). In this paper, we propose a speaker verification algorithm using a support vector machine (SVM) with a very few features, and implemented it on a 32-bit smart card. The proposed algorithm can reduce the required memory space by a factor of more than 100 and can be executed in real-time. Also, we propose a hardware design for the algorithm on a field-programmable gate array (FPGA)-based platform. Based on the experimental results, our SVM solution can provide superior performance over typical speaker verification solutions. Furthermore, our FPGA-based solution can achieve a speed-up of 50 times over a software-based solution.

  • PDF

Solution verification procedures for modeling and simulation of fully coupled porous media: static and dynamic behavior

  • Tasiopoulou, Panagiota;Taiebat, Mahdi;Tafazzoli, Nima;Jeremic, Boris
    • Coupled systems mechanics
    • /
    • v.4 no.1
    • /
    • pp.67-98
    • /
    • 2015
  • Numerical prediction of dynamic behavior of fully coupled saturated porous media is of great importance in many engineering problems. Specifically, static and dynamic response of soils - porous media with pores filled with fluid, such as air, water, etc. - can only be modeled properly using fully coupled approaches. Modeling and simulation of static and dynamic behavior of soils require significant Verification and Validation (V&V) procedures in order to build credibility and increase confidence in numerical results. By definition, Verification is essentially a mathematics issue and it provides evidence that the model is solved correctly, while Validation, being a physics issue, provides evidence that the right model is solved. This paper focuses on Verification procedure for fully coupled modeling and simulation of porous media. Therefore, a complete Solution Verification suite has been developed consisting of analytical solutions for both static and dynamic problems of porous media, in time domain. Verification for fully coupled modeling and simulation of porous media has been performed through comparison of the numerical solutions with the analytical ones. Modeling and simulation is based on the so called, u-p-U formulation. Of particular interest are numerical dispersion effects which determine the level of numerical accuracy. These effects are investigated in detail, in an effort to suggest a compromise between numerical error and computational cost.

Enhancing Document Security with Computer Generated Hologram Encryption: Comprehensive Solution for Mobile Verification and Offline Decryption

  • Leehwan Hwang;Seunghyun Lee;Jongsung Choi
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.169-175
    • /
    • 2024
  • In this paper, we introduce a novel approach to enhance document security by integrating Computer Generated Hologram(CGH) encryption technology with a system for document encryption, printing, and subsequent verification using a smartphone application. The proposed system enables the encryption of documents using CGH technology and their printing on the edges of the document, simplifying document verification and validation through a smartphone application. Furthermore, the system leverages high-resolution smartphone cameras to perform online verification of the original document and supports offline document decryption, ensuring tamper detection even in environments without internet connectivity. This research contributes to the development of a comprehensive and versatile solution for document security and integrity, with applications in various domains.

A Study on Method for Bypassing Verification Function by Manipulating Return Value of Android Payment Application's Security Solution (안드로이드 간편결제 애플리케이션 보안 솔루션 결과값 변조를 통한 검증기능 우회 방법에 대한 연구)

  • You, Jaewook;Han, Mijeong;Kim, Kyuheon;Jang, Junyoung;Jin, Hoyong;Ji, Hanbyeol;Shin, Jeonghoon;Kim, Kyounggon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.4
    • /
    • pp.827-838
    • /
    • 2018
  • Since 2014, ease of regulations on financial institutions expanded the mobile payment market based on simple authentication, and this resulted in the emergence of various simple payment services. Although several security solutions have been used to mitigate possible security threats to payment applications, there are vulnerabilities which can still be found due to the structure in which the security solution is applied to the payment service. In this paper, we analyze the payment application and security solution from the process perspective, and prove through experimentation that verification functions of security solutions can be bypassed without detailed analysis of each security function, but by simply manipulating the verification result value. Finally, we propose methods to mitigate the bypass method presented in this paper from three different perspectives, and thereby contribute to the improvement of security level of the payment service.

Implementation and Verification of Linear Cohesive Viscoelastic Contact Model for Discrete Element Method (선형 부착성 점탄성 접촉모형의 DEM 적용 및 해석적 방법을 이용한 검증)

  • Yun, Tae Young;Yoo, Pyeong Jun
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.25-31
    • /
    • 2015
  • PURPOSES: Implementation and verification of the simple linear cohesive viscoelastic contact model that can be used to simulate dynamic behavior of sticky aggregates. METHODS: The differential equations were derived and the initial conditions were determined to simulate a free falling ball with a sticky surface from a ground. To describe this behavior, a combination of linear contact model and a cohesive contact model was used. The general solution for the differential equation was used to verify the implemented linear cohesive viscoelastic API model in the DEM. Sensitivity analysis was also performed using the derived analytical solutions for several combinations of damping coefficients and cohesive coefficients. RESULTS : The numerical solution obtained using the DEM showed good agreement with the analytical solution for two extreme conditions. It was observed that the linear cohesive model can be successfully implemented with a linear spring in the DEM API for dynamic analysis of the aggregates. CONCLUSIONS: It can be concluded that the derived closed form solutions are applicable for the analysis of the rebounding behavior of sticky particles, and for verification of the implemented API model in the DEM. The assumption of underdamped condition for the viscous behavior of the particles seems to be reasonable. Several factors have to be additionally identified in order to develop an enhanced contact model for an asphalt mixture.

Construction of verification process for the railway total safety technology development project (철도종합안전기술개발사업의 성과물 검증 프로세스 구축)

  • Yoon, Hyuk-Jin;Han, Soon-Woo;Kim, Sang-Ahm;Choi, Kyung-Jin;Cho, Yun-Ok
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1187-1192
    • /
    • 2007
  • Recently, many organizations such as, including government, railroad operational, railroad facilities managemental and research authorities have made a lot of efforts to identify and prevent hazards from leading to accidents and solve them all over the railroad industry. Railroad total safety technology development project conducted as one of national R&D projects has established business formation structure based on system engineering as an effort to define and give a solution to facing problems in the field of railroad. This paper is building procedures to verify the outcomes derived from this project. The verification process is the one for verifying the outcome produced in the final stage of the project or during the project. It makes sure that the system is satisfying the system requirements through verification of the outcomes produced after conducting the project for verification. We've made verification plan for technically reasonable verification using verification process developed through this research, and established master verification plan in the level of 15 detailed projects for interim and final outcomes produced.

  • PDF

The Analysis of Formal Methods for Applying to Vital S/W in Train Control Systems (열차제어시스템 바이탈 소프트웨어를 위한 정형기법 적용 방안 분석)

  • Jo, Hyun-Jeong;Hwang, Jong-Gyu;Yoon, Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1000-1007
    • /
    • 2007
  • Recently, many critical control systems are developed using formal methods. When software applied to such systems is developed, the employment of formal methods in the software requirements specification and verification will provide increased assurance for such applications. Earlier error of overlooked requirement specification can be detected using formal specification method. Also the testing and full verification to examine all reachable states using model checking to undertake formal verification are able to be completed. In the comparison of other formal specification methods, we choose the Z formal language for applying to the train control system. Using Z is able to realize higher correctness in the requirement specification, and we propose the Statemate of the best solution in formal verification tools for the system modeling and verification. The Statemate makes it possible to prove thoroughly the system execution from the simple graphical modeling of the complicated train control system. Then we can expect that the model-based formal method combining Z with Statemate will be utilized widely for the railway systems due to various strong points.

  • PDF

A Study on the High-Speed Malware Propagation Method for Verification of Threat Propagation Prevent Technology in IoT Infrastructure (IoT 인프라 공격 확산 방지 기술 성능 검증을 위한 악성코드 고속 확산 기법 연구)

  • Hwang, Song-yi;Kim, Jeong-Nyeo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.4
    • /
    • pp.617-635
    • /
    • 2021
  • Internet of Things (IoT) devices connected to the network without appropriate security solutions have become a serious security threat to ICT infrastructure. Moreover, due to the nature of IoT devices, it is difficult to apply currently existing security solutions. As a result, IoT devices have easily become targets for cyber attackers, and malware attacks on IoT devices are actually increasing every year. Even though several security solutions are being developed to protect IoT infrastructure, there is a great risk to apply unverified security solutions to real-world environments. Therefore, verification tools to verify the functionality and performance of the developed security solutions are also needed. Furthermore, just as security threats vary, there are several security solution s that defend against them, requiring suitable verification tools based on the characteristics of each security solution. In this paper, we propose an high-speed malware propagation tool that spreads malware at high speed in the IoT infrastructure. Also, we can verify the functionality of the security solution that detect and quickly block attacks spreading in IoT infrastructure by using the high-speed malware propagation tool.

An Adaptive Utterance Verification Framework Using Minimum Verification Error Training

  • Shin, Sung-Hwan;Jung, Ho-Young;Juang, Biing-Hwang
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.423-433
    • /
    • 2011
  • This paper introduces an adaptive and integrated utterance verification (UV) framework using minimum verification error (MVE) training as a new set of solutions suitable for real applications. UV is traditionally considered an add-on procedure to automatic speech recognition (ASR) and thus treated separately from the ASR system model design. This traditional two-stage approach often fails to cope with a wide range of variations, such as a new speaker or a new environment which is not matched with the original speaker population or the original acoustic environment that the ASR system is trained on. In this paper, we propose an integrated solution to enhance the overall UV system performance in such real applications. The integration is accomplished by adapting and merging the target model for UV with the acoustic model for ASR based on the common MVE principle at each iteration in the recognition stage. The proposed iterative procedure for UV model adaptation also involves revision of the data segmentation and the decoded hypotheses. Under this new framework, remarkable enhancement in not only recognition performance, but also verification performance has been obtained.

Integration and Verification of Privacy Policies Using DSML's Structural Semantics in a SOA-Based Workflow Environment (SOA기반 워크플로우 환경에서 DSML의 구조적 접근방법을 사용한 프라이버시 정책 모델의 통합과 검증)

  • Lee, Yong-Hwan;Jan, Werner;Janos, Sztipanovits
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.139-149
    • /
    • 2009
  • In order to verify that a lot of legal requirements and regulations are correctly translated into software, this paper provides a solution for formal and computable representations of rules and requirements in data protection legislations with a DSML (Domain Specific Modeling Language). All policies are formally specified through Prolog and then integrated with DSML, According to the time of policy verification, this solution has two kinds of policies: static policies, dynamic policies.

  • PDF