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This paper introduces an adaptive and integrated 
utterance verification (UV) framework using minimum 
verification error (MVE) training as a new set of solutions 
suitable for real applications. UV is traditionally considered 
an add-on procedure to automatic speech recognition 
(ASR) and thus treated separately from the ASR system 
model design. This traditional two-stage approach often 
fails to cope with a wide range of variations, such as a new 
speaker or a new environment which is not matched with 
the original speaker population or the original acoustic 
environment that the ASR system is trained on. In this 
paper, we propose an integrated solution to enhance the 
overall UV system performance in such real applications. 
The integration is accomplished by adapting and merging 
the target model for UV with the acoustic model for ASR 
based on the common MVE principle at each iteration in 
the recognition stage. The proposed iterative procedure for 
UV model adaptation also involves revision of the data 
segmentation and the decoded hypotheses. Under this new 
framework, remarkable enhancement in not only 
recognition performance, but also verification 
performance has been obtained. 
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I. Introduction 

Conventional automatic speech recognition (ASR) systems 
are generally task specific with a fixed system construct, such 
as vocabulary and grammar, which does not provide a user-
friendly interface with flexibility in accepting a wide range of 
user responses. Oftentimes, the performance of these systems 
is seriously degraded by out-of-vocabulary (OOV) words 
(improper input utterances) spoken by the user or mismatched 
operating designs, such as different training and testing 
conditions. To enhance the ASR performance for a friendlier 
voice user interface, it is necessary to provide a mechanism for 
verifying the level of confidence in the recognition results. 
Such a mechanism should reject OOV utterances as well as 
potentially misrecognized utterances (to allow, for example, 
reconfirmation from the user) to avoid detriments caused by 
senseless recognition errors. This is often called utterance 
verification (UV) [1]-[3]. 

UV is considered a hypothesis testing problem [4]-[6]. In this 
paper, UV refers to the ability to accept or reject a hypothesized 
word corresponding to a correctly decoded keyword, an 
incorrectly decoded keyword, or an OOV word. This capability, 
different from the conventional formulation of speech 
recognition, is implemented as a likelihood ratio-based 
hypothesis testing procedure for verifying individual subword 
units in a decoded word as a result of ASR decoding. That is, 
the verification is performed as post-processing after the 
recognition, and thus the UV performance conventionally 
shows how well the hypothesis testing can be done on the 
given ASR output. However, during testing, if we consider an 
utterance from a new speaker or a new environment which is 
not matched to the original speakers or environments during 
training, not only the recognition performance but also the 
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verification performance would degrade rapidly. In real-world 
applications, such mismatched scenarios are unavoidable. In 
order to overcome serious performance degradation in these 
scenarios, adaptation methods, for example, maximum 
likelihood linear regression [7] and minimum classification 
error (MCE) linear regression [8], have been investigated in 
recent years, and significant progress has been made for speech 
recognition. However, the issue of adaptation as a method to 
mitigate performance degradation in UV due to condition 
mismatch has not been established. Hence, in this paper, we 
propose minimum verification error (MVE) training [9]-[11] as 
the training method for UV in various adaptation scenarios. 
The essence of MVE is to directly minimize the total 
verification errors from both type I errors (miss) and type II 
errors (false alarm) with the given adaptation data. Based on 
the MVE principle, we propose a new adaptive and integrated 
UV framework as a new set of solutions to enhance the overall 
system performance in such mismatched scenarios. 

In real application scenarios, conventional UV is commonly 
considered to be an add-on component in a modular approach 
consisting of two modules: recognition and verification. In the 
stage of recognition, knowledge sources, such as the computed 
likelihoods and the segmented durations, are used for finding 
all hypotheses. In the stage of verification, knowledge sources, 
such as likelihood ratios computed on the segments provided 
from the recognizer, are used as post-processors for accepting 
or rejecting the hypotheses. Although the two stages may 
jointly affect the overall verification performance, many 
researchers have been considering the first stage (recognition 
stage) and the second stage (verification stage) separately. 
Integrating speech recognition and UV in a single decoding 
scheme is believed to be able to offer substantial performance 
improvement, particularly for speech signals that contain OOV 
words, ill-formed words, or ill-modeled utterances. Past 
attempts at such integration include the hybrid decoder of Koo, 
Lee, and Juang [12] and the one-pass likelihood ratio-based 
decoder of Lleida and Rose [2]. Although these proposals take 
advantage of the information from anti-models and likelihood 
ratio testing, the benefits in general do not materialize 
simultaneously in terms of recognition and verification 
performances. 

In this paper, we propose an integrated solution for the two 
stages. By adapting and sharing the target model based on the 
MVE method instead of the acoustic model for ASR, at each 
iteration in the recognition stage, we obtain an improved 
decoder in which a much reduced recognition error rate and 
more accurate segmentation (boundaries) on the hypotheses 
can be accomplished. This revision of recognition hypotheses 
helps to increase the consistency between the data offered for 
verification and the models employed for the test. Moreover, an 

updated transcription with the new segmentation realigned by 
the current-stage target model is used for the next 
discriminative training stage. In this paper, we report our study 
on the incorporation of this new adaptive strategy (involving 
both the hypotheses, together with segmentation and the 
models) in the MVE training. We call this new modeling 
strategy adaptive-MVE (A-MVE). We show that with this new 
strategy, remarkable enhancements in both the recognition 
performance and the verification performance can be obtained.  

This paper is organized as follows. In the next section, we 
describe details of the adaptive UV framework using MVE 
training, and we review the MVE training method in section III. 
Experimental setup and results are presented in section IV. 
Finally, a conclusion is provided in section V.  

II. Adaptive UV 

In this section, an introduction to the basic framework for the 
conventional UV is first provided. We then present the new 
adaptive and integrated methodology as a solution for 
enhancing the entire UV performance in adaptation scenarios. 

The conventional UV framework consists of a recognition 
stage and a verification stage as shown in Fig. 1. In the 
recognition stage, the decoder produces a tentatively 
recognized output for the verification stage. The decoder 
produces the output using generally trained acoustic 
(recognition) models such as context independent 
(CI/monophone) models or context dependent (CD/triphone) 
models [13]. With the output from the decoder, the verification 
system considers them as hypotheses and verifies the 
confidence level for the provided tentative decisions or if they 
correspond to legitimate input to the system. The UV system 
determines the scores of the hypotheses by using the 
corresponding target models and anti-models, a set of the 
verification models, on the segments of the hypotheses 
provided by the decoder. Finally, in the evaluation stage, a ratio 
of the scores is compared to a pre-specified operating threshold. 
Based on the threshold, a final decision is made as to either 
accept or reject the hypothesis. The conventional hypothesis 
testing in the second stage is based on the Neyman-Pearson 
lemma [4]-[6] which teaches the use of likelihood ratio to 
accept or reject a proposed hypothesis as defined in 

0

1

(O )
( ) ; accept or reject.

(O )
k

k
k

p H
LR k

p H
τ>= <      (1) 

A generalized likelihood ratio is computed when testing data 
O is observed, and then compared against a decision threshold 
to decide which one of two hypotheses is to be accepted. The 
two hypotheses are the null hypothesis H0 corresponding to the 
target model and the alternative hypothesis H1 corresponding 
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to the anti-model. The hypothesis testing is performed by 
comparing the likelihood ratio LR(k) to a pre-specified 
operating threshold .kτ  If the two likelihood functions of 

0(O )kp H  and 1(O )kp H  are known exactly, the above 
likelihood ratio test is the most powerful test [4]-[6]. However, 
the true likelihood or distribution functions are unknown in a 
real application.  

The lack of knowledge in the data distribution manifests 
itself in two different perspectives. First, the most fundamental 
one is the form of the distribution function. Often the choice of 
the form of the distribution function is made out of 
convenience, for example, a Gaussian distribution or a mixture 
distribution [13]. The second pertains to the specific parameter 
values that define the chosen distribution function. These 
parameter values, for example, the mean and the covariance in 
the case of Gaussian distributions, are estimated from a labeled 
data set, which is often finite in size. When the chosen 
distribution form does not really match the real data 
distribution (for example, a Gaussian distribution is assumed 
while the data is uniformly distributed), statistical estimation 
methods do not lead to any meaningful numerical results. A 
successful alternative to statistical estimation is discriminative 
training [14]-[16], such as MVE training, which aims at direct 
minimization of the verification error, rather than fitting of the 
distributions. Nevertheless, an additional level of uncertainty 
needs to be addressed; namely, the potential mismatch in the 
statistical behaviors of the training data and of the field data. 
Such a mismatch situation includes but is not limited to a 
change of speaker population or the acoustic ambience. Since 
the pre-labeled data, normally consisting of phoneme 
boundaries, the start time and end time of each phoneme on a 
reference transcription, is at best a limited representation to 
support the given recognition models, the parameters 
optimized for a given training set often suffer significant 
degradation under mismatch operating conditions. In order to 
perform discriminative training to minimize errors arisen from 
mismatched conditions, a certain adaptation scheme must be 
incorporated, including realigning the initial labeled 
boundaries/segments. Moreover, in order to maintain the 
training consistency, segmentation should be obtained by the 
target model for verification rather than the original recognition 
model. In our implementation, the segments are sequentially 
updated along with the target model refinement in the 
discriminative training with the given adaptation data. That is, 
the verification models are being updated iteratively by 
discriminative training, using a matched set of data, associated 
with iteratively obtained labels and segmentations. We 
elaborate these points below. 

In contrast to the conventional UV framework in which the 
label information obtained from the recognition model is fixed  

 

Fig. 1. Basic architecture of two-stage system in conventional UV.
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Fig. 2. Adaptive UV framework. 
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throughout the training stage, our experience indicates that the 
label information obtained from the target model can be 
advantageously utilized to adapt the model parameters to the 
field data for a substantial performance improvement. In this 
paper, we thus propose this new adaptive reusability of the 
label information on the transcription during the discriminative 
training of the verification models using the MVE training 
method with the given adaptation data.  

Furthermore, in the context of the conventional UV as 
shown in Fig. 1, the recognized hypotheses do not change 
regardless of the UV models. This limitation of using only the 
recognized hypotheses carried out by the recognition models 
may substantially affect the entire verification framework. It is 
obvious that improved segmentation and duration in a way 
consistent with the verification models will directly affect the 
verification performance. Meanwhile, if the recognition error is 
improved, resulting in a reduced portion of the incorrectly 
recognized hypotheses, the entire verification framework will 
deliver a superior performance. Hence, as an integrated 
solution for the entire verification framework, we also propose 
the use of the target models updated in the MVE training for 
the recognition stage again as shown in Fig. 2. 

Figure 2 presents a schematic of the proposed solution, 
which produces significant performance gains in both 
recognition and verification for the entire verification 
framework. Although we still present two stages for the 
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reader’s understanding in Fig. 2, it can be considered 
essentially as one integrated stage associated with only the 
verification models (the MVE target and anti-models) in 
contrast to the conventional rigid two stages associated with the 
inconsistent recognition models and verification models as 
shown in Fig. 1. In this new framework, at every iteration 
during the discriminative training, not only the label 
information for the next MVE training but also the recognized 
output for the hypothesis testing is sequentially updated by the 
current-stage MVE target model. Hence, throughout the 
adaptive UV framework with the MVE training, we can obtain 
improved decoding results and discriminatively trained 
verification models for the adaptation data simultaneously. It is 
obvious that the updated decoder would produce a possibly 
better set of hypotheses for the verification stage by the MVE-
trained verification models. In section IV, we conduct a 
comparison between the conventional UV framework and this 
new adaptive UV framework. Remarkable performance 
enhancement by the proposed framework has been obtained 
compared to the conventional framework. 

III. MVE Training 

The MVE training method can be viewed as a special 
version of the MCE method [14], [17], [18] for detection and 
verification problems. Similar to the MCE criterion, the 
objective of the MVE training is to directly minimize the 
empirical average loss. In contrast to the conventional string-
based MVE [9], [10], here we will derive the segment-based 
MVE [11], [19], [20]. We note that the string-based MVE was 
initially designed to minimize the empirical average loss in the 
given strings when a pair of detectors is used as a recognizer. 
Hence, it still focuses on minimizing the recognition errors 
rather than the verification errors. Alternatively, the segment-
based MVE directly minimizes the total verification errors as 
the weighted sum of type I and type II errors not in the given 
strings but in the given segments. An obvious advantage of the 
segment-based MVE is that the intrinsic properties of the 
speech signal, which is based on segments during the 
recognition and the verification, can be directly embedded into 
the training phase, and accordingly, the total verification errors 
latent in every given segments are efficiently minimized. In this 
section, we will review the theoretical framework of the 
segment-based MVE. 

Suppose there are M classes and K training tokens 
(segments) in a training set. For a given training set {O1, O2, …, 
Ok}, the empirical average loss is defined by 

 total
1 1

1( ) (O )1(O class ),
K M

i
k k

k i
L l i

K = =

Θ = Θ ∈∑∑      (2) 

where 1(·) is an indicator function that returns 1 when the 
given token Ok belongs to the certain class i among the total M 
classes, and 0 otherwise, and total (O )i

kl Θ  is the composite 
error estimation function which combines two different kinds 
of verification errors: type I error (miss) and type II error (false 
alarm). The composite error estimation function can be 
described as 

total I I II II
1,

(O ) (O ) (O ),
M

i i j
k k k

j j i
l PW l PW l

= ≠

Θ = Θ + Θ∑   (3) 

where PWI and PWII are the penalty weights for type I and  
type II errors, respectively, and lI and lII are smoothed loss 
functions to approximate the empirical verification error on 
each training sample Ok defined as  

I
I

1(O ) ,
1 exp{ (O )}

i
k i

k

l
dα

Θ =
+ − Θ

        (4) 

and 

II
II

1(O ) ,
1 exp{ (O )}

1, 2,..., , ,

j
k j

k

l
d

j M j i

α
Θ =

+ − Θ
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       (5) 

where α is a constant which controls the slope of the smoothing 
function, and d(Ok) is the misclassification measure for the two 
types of detection errors. The two misclassification measures 
for each incoming training token Ok labeled as the i-th class 
event can be formulated as 

(O ) (O ) (O ),i i i i i
I k t k t a k ad g gΘ = − Θ + Θ        (6) 

and 

II (O ) (O ) (O ),
1,2,..., , ,

j j j j j
k t k t a k ad g g

j M j i
Θ = + Θ − Θ

= ≠
      (7) 

where dI and dII are the type I and type II misclassification 
measures, respectively. In (6) and (7), i

tg and i
ag are the 

normalized log likelihood, and i
tΘ  and i

aΘ are the parameter 
set of the target and the anti-model for the i-th class, 
respectively. In hidden Markov models (HMMs) [13], 

(O; )i ig Θ can be described as the maximum log likelihood of 
the state sequence obtained by Viterbi alignment [13]. For 
example, a set of the class discriminant functions 

(O; ), 1,2,..., ,i ig i MΘ = can be expressed by 

( )
0 1

1

1

(O; ) (O ) O, , ,{ }

( ),
t t t

i i i i i i N
j j

Ti i i
q q q q tt

g P P a b

a b o

π

π
−

=

=

Θ = Θ =

= ∏

q
    (8)  

where q=(q1, q2,…, qT) is any state sequence being generated 
by the Markov chain, and the parameter set iΘ is associated 
with an initial state probability π, a state transition probability a, 
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and state observation distribution bj, j=1, 2,…, N states. In this 
paper, we choose the maximum joint observation-state 
probability for the discriminant function (O; )i ig Θ such that 

1 0
1

(O; ) log{max (O, ; )} log{ (O, ; )}

[log log ( )] log ,
t t t

i i i i i i

q

T
i i i
q q q t q

t

g g q g

a b o π
−

=

Θ = Θ = Θ

= + +∑

q
  (9) 

where 1 2( , ,..., )Tq q q=q is the optimal state sequence. In 
addition, the output likelihood ( )

t

i
q tb o of the K-mixture 

Gaussian can be defined by 
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1
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∑

∑ ∑

N

 
(10)

 

where D is the dimension of ot, and , ,i i
jk jkc μ and i

jkR are the 
mixture weight, the mean vector, and the covariance matrix of 
the k-th mixture component in the j-th state for the i-th HMM 
model, respectively. 

Finally, according to an iterative procedure with the given 
training data, all the parameters in tΘ and aΘ follow the 
update rule of the GPD algorithm [14], [17], [18] when 
minimizing (2) as defined by  

1 total (O ) ,
k

k k k klε+ Θ=Θ
Θ = Θ − ∇ Θ        (11) 

where kε is a learning rate, and k is the cumulative number of 
the processed training samples at time t. In our implementation, 
the optimization algorithm above is operated on a sample-by-
sample basis update of four kinds of the parameters, 

{ , , , }.i i i i i
jkl jkl jk ijc aμ σΘ =  For brevity, here we only derive the 

updating process for the mean vector in the parameter set. The 
discriminative adjustment of the mean vector in the target 
model parameter set i

tΘ  follows: 

total (O )
( 1) ( ) ,

i
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ni i
jkl jkl i

jkl

l
n nμ μ ε

μ
Θ=Θ

∂ Θ
+ = −

∂
     (12) 

where /i i i
jkl jkl jklμ μ σ= satisfying the internal constraints [13], 

[14] in the HMMs. If On ∈  class i, then the partial derivative 
part in (12) is expressed in detail as follows: 
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In (13), the mean vector i
jklμ is associated only with the output 

likelihood functions, and the gradient of (O )i i
t ng Θ is 

therefore written as 
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where ( )δ ⋅  is the knonecker delta function. The last step is to 
convert i

jklμ  back according to 

( 1) ( 1) ( ).i i i
jkl jkl jkln n nμ μ σ+ = +           (16) 

Similarly, the derivations for the variance vectors, the mixture 
weights, and the transition probabilities can be easily 
accomplished [14], [18], [21].  

IV. Experimental Setup and Results 

1. Experimental Setup 

All of our experiments were conducted on distance-talking 
and noisy speech databases collected under four different 
remote talking conditions: 30 cm, 60 cm, 100 cm, and 150 cm 
corresponding to the distance between a talker and the 
microphone. Recordings were performed in a room with a 
realistic level of noise in a home-noise environment. In 
particular, the background noise components consisted of 
normal sounds of a refrigerator, television, audio playback, and 
people’s conversations. 

In all evaluation sets, the number of keywords and OOV 
words are chosen to be identical. Each of the distance-talking 
and noisy speech databases is comprised of 1,470 utterances 
recorded by 49 speakers, 30 utterances per speaker. Each 
utterance consists of an isolated word such as a command or 
point of interest for a voice control application of an in-car 
navigation system. For the keyword detection and OOV word 
rejection experiments, we set 130 keywords and 50 OOV 
words in the 1,470 utterances. Among the 1,470 utterances, 
1,113 (75.71%) of them contain 130 keywords considered as 
legitimate inputs, and the other 357 (24.29%) contain 50 OOV 
words considered invalid inputs to be rejected by the system. In 
the recognition stage, a simple keyword-loop network with 130 
keywords and a silence model is used in the decoding as 
shown in Fig. 3 (no language model used). For the isolated 
keyword recognition, the Viterbi algorithm [13] in the 
decoding is employed to find the most likely keyword through 
the keyword-loop network for each given observation. 
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Fig. 3. Keyword-loop network in the decoding. 
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The feature extractor of the recognition and verification 
systems computes 39 components consisting of 12 mel-
frequency cepstral coefficients plus normalized log energy and 
their first- and second-order time derivatives. For the baseline 
recognition models, a set of Korean 45 CI monophone acoustic 
models were used. All models are represented by 3-state strict 
left-to-right HMMs with 16 Gaussian mixture components per 
state. All the experiments in the training and testing were 
conducted on the abovementioned model description. 

2. Training Process 

For the baseline recognition models and verification models, 
a large vocabulary speech corpus consisting of 1,700,000 
phone optimized word utterances, 40,000 sentence-based 
utterances, and 160,000 distant talking utterances were used for 
the initial maximum likelihood (ML) trained models. Then, we 
refined the ML-trained models with 1,500 utterances, which 
are a part of the data used for training the ML models, using the 
conventional MVE method. The refined-MVE models have 
been used for all adaptation experiments as the baseline models. 

In the adaptation training side, we trained the baseline 
models based on the two MVE training scenarios: The first 
scenario is performed on the conventional MVE training under 
the two-stage conventional UV framework which does not 
update the transcription for the MVE training and produces the 
fixed recognition hypotheses carried out by the baseline 
recognition model. The second scenario is performed by the A-
MVE training under the proposed framework, the adaptive UV 
framework, with the improved transcriptions sequentially 
updated for the next MVE training and re-decoded hypotheses 
produced by the MVE-trained target model so that a small 
portion of incorrectly recognized hypotheses is obtained, and 
improved knowledge sources on the hypotheses, such as 
segmentation and duration, efficiently affect the verification 
stage. Both are trained with 490 utterances (one third of the 
total 1,470 testing utterances) randomly chosen in the keyword 
utterances at each iteration. Since the experiments in this paper  
are intended for a speaker-independent UV system, we use the 
randomly chosen keyword utterances regardless of speakers at 

every iteration. Then, the discriminative training procedure is 
performed over 10 iterations. As previously discussed, at each 
iteration, the label information on the transcription is realigned 
by the current-stage MVE target model. Also, the updated label 
information is used for the next discriminative training stage. 
During the training process over 10 iterations, the 
discriminative adjustment of the parameter set follows the 
GPD algorithm as shown in section III. In terms of the 
parameter optimization by the GPD algorithm over the 
iterations, an important issue is how to design the learning rate 
εk in (11) and (12). We will discuss in detail this issue as well as 
the convergence issue in subsection IV.4. 

3. Word-Level Hypothesis Testing 

After the isolated keyword recognition, for the hypothesis 
testing of the given recognized word, we first consider 
subword-level (monophone-level) acoustic verification scores 
based on the following equation modified from (1): 

0

1

(O ) (O )
,

(O ) (O )

p
t

p p
a

p H p
LR

p H p
Θ

= =
Θ

          (17) 

where O is the speech segment of the word w, and p
tΘ  and 

p
aΘ are the corresponding target subword and anti-subword 

models for subword p, respectively. By taking logarithm of 
(17), the log likelihood ratio LLRp for the subword p can be 
expressed as 

log (O ) log (O ).p p
p t aLLR p p= Θ − Θ     (18) 

The word level confidence score CMw is then defined by  

1 ,w n
n

CM LLR
N

= ∑              (19) 

where N is the total number of subwords in the word w. The 
confidence measure (CM) score CMw for each hypothesized 
word w is compared to a pre-specified operating threshold. 
Based on the threshold, the final decision for the hypothesized 
word w is made as either acceptance or rejection. In our 
experiments, all the UV results for the hypotheses are based on 
the CM in (19). We note that instead of the simple CM above, 
one can use enhanced CMs [22]-[24] using more knowledge 
sources and particular rule-based integration of the knowledge 
sources on the hypotheses. Better CMs may directly improve 
the verification performance and may have to be considered for 
the task containing extremely many keywords and OOV words. 
In this paper, we only focus on discriminative parameter 
separation and optimization using the MVE training with a part 
of the given keyword utterances to increase keyword detection 
rate and OOV rejection rate (REJ) simultaneously. One can 
further extend the proposed framework by associating the 
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enhanced CMs.    
We then count the number of errors in keywords and OOV 

words and present the total word error rate (WER) and REJ of 
the OOV words, respectively, at the certain false REJ, for 
example, 7% false REJ and 15% false REJ. In practice, one 
usually has to pick a specific false acceptance or false REJ as 
part of the operating specifications on the system [25]. It is 
more desirable to optimize UV performance at a particular 
operating point instead of equal error rate (EER). Nevertheless, 
the EER has been widely used as one of the important 
performance metrics in the fields of detection and verification 
researches. Thus, we also include the EER performance in our 
overall performance evaluation. 

4. GPD-Based Optimization 

As discussed, an important issue in the GPD-based 
optimization over the iterations is how to design the learning 
rate εk. Moreover, the hyper-parameter α of the sigmoid 
function is also related to the training performance and 
convergence. In this subsection, we focus on discussing a 
number of design techniques of these two parameters since the 
GPD algorithm requires the parameters to be properly set to 
converge [26].  

The parameter α controls the slope of the sigmoid function 
and thus determines how the punishment is when an error 
occurs in the misclassification measures (6) and (7). For 
example, from (4) and (5), it can be shown that the sigmoid 
function curve varies with different values of α, and the curve 
becomes sharper as α increases. It means that a large value of α 
will make the convergence speed of the training process faster, 
but it may cause the over-fitting of the parameters. On the 
contrary, a small value of α may lead to a slow convergence. 
The conventional setup of the value of α is that it is fixed 
during the training with α>0.5. In the following all experiments, 
we set the value of α to 1.0 as a fixed global parameter. 

Similarly, the learning rate εk directly affects the 
discriminative adjustment of the parameter set. If the learning 
rate is too high, the parameter may be overstrained at the 
beginning, and thus the performance may degrade seriously. 
Alternatively, if the learning rate is too low, the parameter may 
be tuned little by little, and thus the convergence may be too 
slow. This property of the GPD-based optimization is well 
known, and a heuristic method to set the learning rate is 
commonly used. In our implementation, we apply various 
different values of the learning rate from 1.5 to 0.0005 to the 
individual MVE training at every iteration. Then, we choose 
the best model and proceed the next MVE training with the 
above various different values of the learning rate again. 
Therefore, there is no performance degradation over the 

 

Fig. 4. Change of WER by percent at 7% false REJ over 10
iterations for four different databases. 
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Fig. 5. Change of OOV REJ by percent at 7% false REJ over 10
iterations for four different databases. 
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iterations. In the following experiments, this procedure is 
repeated for 10 iterations. Figures 4 and 5 show the change of 
WER and OOV REJ by percent with increasing number of 
iterations. Note that both are measured at 7% false REJ. It is 
shown that there is no performance degradation iteration-by-
iteration as we discussed above, and most of performance gains 
have been achieved largely in the first three iterations in both 
WER and OOV REJ. In addition, after 8 iterations, the 
performance change curves in both Figs. 4 and 5 are flat. It tells 
us that the GPD-based optimization converges to a local 
minimum of the empirical loss within the given training data 
after 8 iterations.  

5. Detailed Results on Four Different Databases 

In this subsection, we will analyze the detailed overall 
performance between the proposed framework and the 
conventional framework with respect to each of the four 
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different databases. In particular, all the performance metrics 
are measured at specific iteration point 3. This is because most 
of the performance gains have been achieved largely in first 
three iterations, as shown in Figs. 4 and 5. Furthermore, in real 
applications, if there are too many iterations, the performance 
becomes labor-intensive and time-consuming. 

A. 30 cm Database 

The first testing set among the four different distance-talking 
and noisy speech databases is the “30 cm database” with 30 cm 
distance in terms of the remote talking condition between a 
talker and the microphone. An overall performance 
comparison of the three different methods, baseline, 
conventional MVE, A-MVE, respectively, is presented in  
Table 1. 

From the second row in the table, with no rejection (that is, 
REJ=0.0%), the initial WER of 29.05% is observed by the 
baseline model. On the other hand, with the verification, the 
WER is reduced to 13.09% at 7% false REJ and 8.66% at 15% 
false REJ. Furthermore, the REJ of the OOV words is 64.99% 
at 7% false REJ and 79.27% at 15% false REJ, respectively, 
after the verification.  

The third row (MVE) shows the overall performance by the 
conventional MVE-trained model and under the conventional 
UV framework. With the verification, the WER drops to 
4.01%, and the OOV REJ is increased to 90.48% at 15% false 
REJ. Although the MVE method under the conventional UV 
framework produces substantial word error reduction rate and 
improved OOV REJ compared to the baseline performance, 
the proposed method, the A-MVE under the adaptive UV 
framework, confirms that considerable additional gains of 
performance can be achieved all over the performance metrics: 
In particular, the WER has been reduced to 3.77% and 1.48% 
at 7% false REJ and 15% false REJ, respectively. In addition, 
with respect to the OOV REJ, more remarkable performance 
improvement is observed. The OOV REJ of 89.92% 
and96.08% is achieved by the A-MVE method at 7% false 
REJ and 15% false REJ, respectively. Finally, we present EER 
 

Table 1. Overall performance comparison on 30 cm database. 

 
WER at 

0% rejection 
(%) 

WER/OOV REJ 
at 7% false 

rejection (%) 

WER/OOV REJ 
at 15% false 
rejection (%)

EER 
(%) 

Baseline 29.05 13.09/64.99 8.66/79.27 17.08

MVE 29.05  7.98/78.99 4.01/90.48 12.49

A-MVE 25.37  3.77/89.92 1.48/96.08 8.26

 

 

Fig. 6. DET curves of three different methods on 30 cm database.
The circles on the diagonal line are EER points. 
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performance in the rightmost column of the Table 1. It can be 
shown that the EER of the A-MVE is significantly reduced 
compared to the baseline as well as the MVE. For details,   
Fig. 6 shows detection error tradeoff (DET) curves [27] of the 
three different methods on the 30 cm database. 

As a result, the A-MVE method reduces the WER without 
the verification and also provides benefits with the verification 
by producing improved knowledge such as segmentation for 
the hypothesis testing. All experimental results confirm that 
with the verification by the A-MVE, the WER is remarkably 
reduced, and a substantial improvement of the OOV REJ is 
achieved simultaneously.  

B. 60 cm and 100 cm Databases  

The second and third testing sets are the “60 cm database” 
and “100 cm database” with a longer recording distance than 
the 30 cm database. As we have observed in the 30 cm 
database, the A-MVE significantly reduces the WERs, both 
without the verification and with the verification, and notably 
improves the verification performance, the OOV REJ, and the 
EER on both databases. The details of the performance 
comparison on these databases are presented in Tables 2 and 3, 
respectively. 

In particular, at 7% false REJ on 60 cm database and    
100 cm database after 3 iterations, the proposed framework 
using the A-MVE training reduces the WER by further 6.86% 
and 7.70% and simultaneously increases the OOV REJ by 
further 12.88% and 3.38%, respectively, over the conventional 
framework using the MVE training. 

From the experimental results on the 30 cm, 60 cm, and  
100 cm databases, it is clear that under the proposed adaptive 
UV framework, the two types of false alarms (misrecognized 
keywords and OOVs) are minimized while the detection of 
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Table 2. Overall performance comparison on 60 cm database. 

 
WER at 

0% rejection 
(%) 

WER/OOV REJ 
at 7% false 

rejection (%) 

WER/OOV REJ 
at 15% false 
rejection (%) 

EER 
(%) 

Baseline 37.69  19.79/56.02  14.88/70.87 19.03 

MVE 37.69 15.24/65.83 9.64/81.79 14.97

A-MVE 28.11  8.38/78.71 3.74/91.88 12.22

Table 3. Overall performance comparison on 100 cm database. 

 
WER at 

0% rejection 
(%) 

WER/OOV REJ 
at 7% false 

rejection (%) 

WER/OOV REJ 
at 15% false 
rejection (%) 

EER 
(%)

Baseline 52.15  29.67/58.03  22.60/71.55 18.68 

MVE 52.15 19.90/70.70 13.62/80.28 13.56

A-MVE 33.06 12.13/74.08 5.44/89.58 12.60

 

correctly recognized keywords is maximized. 

C. 150 cm Database  

The last testing set is the “150 cm database” with the longest 
distance between a talker and the microphone among all the 
databases (Table 4). However, it contains as much background 
noise as the others. Thus, the baseline performance is seriously 
degraded from 29.05% to 59.71% in terms of the WER 
compared to the 30 cm database. Even with the verification, 
the performance is limited to the WER of 26.82% and the 
OOV REJ of 74.01% at a 15% false REJ. With the verification 
by the conventional MVE, the WER drops from 26.82% to 
15.91% and the OOV REJ improves from 74.01% to 83.90%, 
whereas by the A-MVE method, the WER rapidly drops from 
59.71% to 39.06%, even without the verification. Furthermore, 
with the verification by the A-MVE, the WER is reduced to 
7.66%, and the OOV REJ is increased to 88.14% at a 15% 
false REJ. These results reconfirm that the A-MVE method 
significantly reduces the WER and, at the same time, 
effectively enhances the function of the OOV rejection. We 
note that the EER in the A-MVE is slightly increased 
compared to the conventional MVE. The reason is that all 
information including label identities and their corresponding 
segments on the re-recognized hypotheses dramatically change. 
It means that the wide-ranging variation of the knowledge 
sources of the updated hypotheses may affect all the ratios of 
each subword and their average word-level confidence scores. 
However, as discussed, EER itself cannot be a conclusive 
measurement of the performance metrics for verifying the ASR 
system. To precisely measure the overall UV performance, we 

Table 4. Overall performance comparison on 150 cm database. 

 
WER at 

0% rejection
(%) 

WER/OOV REJ 
at 7% false 

rejection (%) 

WER/OOV REJ 
at 15% false 
rejection (%) 

EER 
(%)

Baseline 59.71  36.09/54.80  26.82/74.01 17.79 

MVE 59.71 23.00/73.16  15.91/83.90 12.88 

A-MVE 39.06 14.59/73.73   7.66/88.14 13.09 

 

focus on the WER and the OOV REJ with the verification. 

V. Conclusion 

In this paper, we have investigated the adaptive and 
integrated UV framework using the minimum verification 
error (MVE) training as a new set of solutions to the entire UV 
system in real applications. First, in order to mitigate serious 
performance degradation due to mismatched operating 
conditions in the real applications, in contrast to the 
conventional UV framework in which the label information 
(segments/boundary) obtained from the recognition model is 
fixed throughout the training session, we proposed the adaptive 
reusability of the label information obtained from the target 
model at every iteration during the discriminative training of 
the verification models. Furthermore, in the context of the 
conventional UV, the recognized hypotheses do not change 
regardless of the UV models. We proposed the use of the target 
models updated in the MVE training for the recognition stage 
to obtain improved segmentation and duration in a way 
consistent with the verification models and hypothesis testing. 
Consequently, for the entire UV system, the proposed 
framework can be considered as one integrated stage 
associated with only the verification models (the MVE target 
and anti-models) in contrast to the conventional rigid two 
stages associated with the inconsistent recognition model and 
verification models. 

Throughout the proposed adaptive and integrated UV 
framework with the segment-based MVE training, we 
simultaneously obtained an improved overall system decoder 
with a much reduced recognition error rate and 
discriminatively trained verification models which significantly 
enhance the entire verification performance in such real 
application scenarios. All experimental results confirm that the 
proposed framework produces remarkable performance gains 
in both the recognition and verification. In particular, with the 
verification at both 7% and 15% false REJs, the WER was 
considerably reduced, and a substantial improvement of the 
OOV REJ was also achieved all over the distance-talking and 
noisy speech databases. The proposed framework shows 
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promise in user-friendly interface systems, such as in-car 
navigation and cell phones, and when aiming for proper 
detection of keywords and high rejection of OOV words in 
real-world applications. 

References 

[1] M. Rahim, C.-H. Lee, and B.-H. Juang, “Discriminative Utterance 
Verification for Connected Digits Recognition,” IEEE Trans. 
Speech Audio Process., vol. 5, May 1997, pp. 266-277. 

[2] E. Lleida and R.C. Rose, “Utterance Verification in Continuous 
Speech Recognition: Decoding and Training Procedures,” IEEE 
Trans. Speech Audio Process., vol. 8, March 2000, pp. 126-139. 

[3] R.A. Sukkar, A.R. Setlur, and C.-H. Lee, “Vocabulary 
Independent Discriminative Utterance Verification for 
Nonkeyword Rejection in Subword Based Speech Recognition,” 
IEEE Trans. Speech Audio Process., vol. 4, pp. 420-429, Nov. 
1996. 

[4] E.L. Lehmann, Testing Statistical Hypotheses, John Wiley & Sons, 
1959. 

[5] S.M. Kay, Fundamentals of Statistical Signal Processing: 
Detection Theory, NJ: Prentice-Hall, Englewood Cliffs, 1998. 

[6] G. Casella and R.L. Berger, Statistical Inference, Duxbury Press, 
New York, 2001. 

[7] C.J. Leggetter and P.C. Woodland, “Maximum Likelihood Linear 
Regression for Speaker Adaptation of Continuous Density 
Hidden Markov Models,” Computer Speech and Language, vol. 
9, 1995, pp. 171-185. 

[8] J. Wu and Q. Huo, “A Study of Minimum Classification Error 
(MCE) Linear Regression for Supervised Adaptation of MCE-
Trained Continuous-Density Hidden Markov Models,” IEEE 
Trans. Speech Audio Process., vol. 15, 2007, pp. 478-488. 

[9] M. Rahim and C.-H. Lee, “String-Based Minimum Verification 
Error (sb-mve) Training for Speech Recognition,” Computer 
Speech and Language, vol. 11, 1997, pp. 147-160. 

[10] A.E. Rosenberg, O. Siohan, and S. Parthasarathy, “Speaker 
Verification Using Minimum Verification Error Training,” 
ICASSP, 1998, pp. 105-108. 

[11] Q. Fu and B.-H. Juang, “Segment-Based Phonetic Class Detection 
Using Minimum Verification Error (MVE) Training,” in 
Interspeech, Lisbon, Portugal, Sept. 2005. 

[12] M.-W. Koo, C.-H. Lee, and B.-H. Juang, “Speech Recognition 
and Utterance Verification Based on a Generalized Confidence 
Score,” IEEE Trans. Speech Audio Process., vol. 9, Nov. 2001, 
pp. 821-832. 

[13] L.R. Rabiner and B.-H. Juang, Fundamentals of Speech 
Recognition, Englewood Cliffs, NJ: Prentice-Hall, 1993. 

[14] B.-H. Juang, W. Chou, and C.-H. Lee, “Minimum Classification 
Error Rate Methods for Speech Recognition,” IEEE Trans. 
Speech Audio Process., vol. 5, May 1997, pp. 257-265. 

[15] D. Povey, “Discriminative Training for Large Vocabulary Speech 
Recognition,” PhD thesis, Cambridge University, 2004. 

[16] X. He, L. Deng, and W. Chou, “Discriminative Learning in 
Sequential Pattern Recognition: A Unifying Review for 
Optimization-Oriented Speech Recognition,” IEEE Signal 
Process. Mag., vol. 25, Sept. 2008, pp. 14-36. 

[17] B.-H. Juang and S. Katagiri, “Discriminative Learning for 
Minimum Error Classification,” IEEE Trans. Signal Process., vol. 
40, Dec. 1992, pp. 3043-3054. 

[18] W. Chou, C.-H. Lee, and B.-H. Juang, “Segmental GPD Training 
of HMM Based Speech Recognizer,” ICASSP, Apr., 1992, pp. 
473-476. 

[19] Q. Fu and B.-H. Juang, “A Study on Rescoring Using HMM-
Based Detectors for Continuous Speech Recognition,” ASRU, 
Kyoto, Japan, Dec. 2007, pp. 570-575. 

[20] S. Shin et al., “Discriminative Linear-Transform Based Adaptation 
Using Minimum Verification Error,” ICASSP, Texas, USA, Mar. 
2010, pp. 4318-4321. 

[21] W. Chou, “Minimum Classification Error Approach in Pattern 
Recognition,” Pattern Recognition in Speech and Language 
Processing, W. Chou and B.-H. Juang, Eds., Boca Raton: CRC 
Press, 2003, pp. 1-49. 

[22] F. Wessel et al., “Confidence Measures for Large Vocabulary 
Continuous Speech Recognition,” IEEE Trans. Speech Audio 
Proc., vol. 9, no. 3, Mar. 2001, pp. 288-298. 

[23] T. Hazen and I. Bazzi, “A Comparison and Combination of 
Methods for OOV Word Detection and Word Confidence 
Scoring,” IEEE Int. Conf. Acoustics, Speech, Signal Process., Salt 
Lake City, Utah, May 2001. 

[24] F.K. Soong, W.K. Lo, and S. Nakamura, “Generalized Word 
Posterior Probability (GWPP) for Measuring Reliability of 
Recognized Words,” Proc. SWIM, 2004. 

[25] M.-H Siu, B. Mak, and W.-H. Au, “Minimization of Utterance 
Verification Error Rate as a Constrained Optimization Problem,” 
IEEE Signal Process., Letters, vol. 13, Dec. 2006, pp. 760-763. 

[26] J.A. Snyman, Practical Mathematical Optimization, New York: 
Springer, 2005. 

[27] A. Martin et al., “The DET Curve in Assessment of Detection 
Task Performance,” Proc. European Conf. Speech Commun. 
Technol., 1997, pp. 1895-1898.  

 
 
 
 
 
 
 
 
 
 



ETRI Journal, Volume 33, Number 3, June 2011 Sung-Hwan Shin et al.   433 

Sung-Hwan Shin received the BS in 
information engineering from Myong-Ji 
University, Rep. of Korea, in 2007, and the MS 
in electrical and computer engineering from the 
Georgia Institute of Technology, Atlanta, in 
2009. He is currently pursuing the PhD at the 
School of Electrical and Computer Engineering, 

Georgia Institute of Technology, Atlanta. His research interests include 
speech recognition, utterance verification, discriminative training 
algorithms, and statistical signal processing. 
 

Ho-Young Jung received the BS in electronics 
engineering from Kyungpook National 
University, Daegu, Rep. of Korea, in 1993, and 
the MS and PhD in electrical engineering from 
Korea Advanced Institute of Science and 
Technology (KAIST), Daejeon, Rep. of Korea, 
in 1995 and 1999, respectively. His PhD 

dissertation was on robust speech recognition. He joined ETRI, 
Daejeon, Rep. of Korea, in 1999 as a senior researcher and has been 
with the Speech/Language Information Research Center from 2002. 
Since 2010, he has been a principle member of the research staff. His 
current research interests include speech recognition, noise-robust 
processing, blind signal separation, and machine learning. He has 
published or presented about 30 papers in speech processing. 
 

Biing-Hwang Juang received his PhD from 
the University of California, Santa Barbara. He 
joined Speech Communications Research 
Laboratory (SCRL) in 1978 and Signal 
Technology, Inc. (STI) in 1979, working on a 
number of government-sponsored research 
projects. He was also a co-principal investigator 

for the project on cochannel separation of speech signals sponsored by 
the US Government. He subsequently joined Bell Laboratories in 1982, 
working in the area of speech enhancement, coding and recognition. 
Prof. Juang later became the director of Acoustics and Speech 
Research at Bell Labs, and at the turn of the century, the director of 
Multimedia Technologies Research at Avaya Labs (a spin-off of Bell 
Labs). Prof. Juang has published extensively, including the book 
“Fundamentals of Speech Recognition,” coauthored with L.R. Rabiner, 
and holds about twenty patents. He has served as editor-in-chief for 
the IEEE Transactions on Speech and Audio Processing, and a number 
of positions in the IEEE Signal Processing Society, including chair of 
its Fellow Evaluation Committee. Prof. Juang has received a number 
of technical awards, notable among which are several best paper 
awards in the area of speech communications and processing, the 
Technical Achievement Award from the Signal Processing Society of 
the IEEE, and the IEEE Third Millennium Medal. He is a fellow of the 
IEEE, a fellow of Bell Laboratories, a member of the US National 

Academy of Engineering, and an Academician of Academia Sinica. 
Prof. Juang joined Gatech in 2002 holding the Motorola Foundation 
Chair Professorship and is an eminent scholar of Georgia Research 
Alliance. 
 

 
 
 


