• Title/Summary/Keyword: solution resistance

Search Result 1,858, Processing Time 0.033 seconds

Evaluation of the Characteristics of the Aluminum Alloy Casting Material by Heat Treatment (AC8A 알루미늄합금 주조재의 열처리에 의한 특성 평가)

  • Lee, Syung Yul;Park, Dong Hyun;Won, Jong Pil;Kim, Yun Hae;Lee, Myung Hoon;Moon, Kyung Man;Jeong, Jae Hyun
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.280-285
    • /
    • 2012
  • Aluminum is on active metal, but it is well known that its oxide film plays a role as protective barrier which is comparatively stable in air and neutral aqueous solution. Thus, aluminum alloys have been widely applied in architectural trim, cold & hot-water storage vessels and piping etc., furthermore, the aluminum alloy of AC8A have been widely used in mold casting material of engine piston because of its properties of temperature and wear resistance. In recent years, the oil price is getting higher and higher, thus the using of low quality oil has been significantly increased in engines of ship and vehicle. Therefore it is considered that evaluation of corrosion resistance as well as wear resistance of AC8A material is also important to improve its property and prolong its lifetime. In this study, the effect of solution and tempering heat treatment to corrosion and wear resistance is investigated with electrochemical method and measurement of hardness. The hardness decreased with solution heat treatment compared to mold casting condition, but its value increased with tempering heat treatment and exhibited the highest value of hardness with tempering heat treatment temperature at $190^{\circ}C$ for 24hrs. Furthermore, corrosion resistance increased with decreasing of the hardness, and decreased with increasing of the hardness reversely. As a result, it is suggested that the optimum heat treatment to improve both corrosion and wear resistance is tempering heat treatment temperature at $190^{\circ}C$ for 16hrs.

Manufacture and Properties of Inorganic Chemical Treated Wood by Introducing of Fluorides

  • Kim, Soung-Joon;Lee, Jong-Shin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.73-78
    • /
    • 2008
  • Inorganic chemical treated wood was prepared by impregnation of calcium or magnesium chloride ($CaCl_2$ or $MgCl_2$) solution and immersion in saturated solution of ammonium fluoride ($NH_4F$) as a reactant in order to make an introduction of a refractory fluorides with fungicidal and insecticidal effects in wood. The weight percent gains (WPGs) were increased with increase in concentration of calcium chloride or magnesium chloride solution, and were higher in treatment with calcium chloride than with magnesium chloride. Inorganic substances were produced mainly in the lumina of tracheides. These substances were proved to be the calcium fluoride or magnesium fluoride by the energy dispersive X-ray analyzer in conjunction with a scanning electron microscope (SEM-EDX). The treated wood showed good decay resistance because the weight losses were hardly occurred by the test fungi such as Tyromyces palustris and Trametes versicolor. The fire resistance effect was superior to the treated wood compared with that of the untreated wood.

Evaluation of the Corrosion Resistance of Zn-Coated Steel as a Function of the Temperature of the Cr-free Solution Used to Coat the Steel (Cr-free 코팅액에 의한 아연도금강판의 열처리 온도에 따른 내식특성)

  • Seo, Hyun-Soo;Moon, Hee-Joon;Kim, Jong-Soon;Ahn, Seok-Hwan;Moon, Chang-Kwon;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.60-66
    • /
    • 2010
  • Zinc has a number of characteristics that make it well suited for use as a coating to protecting iron and steel products from corrosion. Its excellent corrosion resistance in most environments accounts for its successful use as a protective coating on a variety of products and in many exposure conditions. The excellent field performance of zinc coatings results from their ability to form dense, adherent films that corrode at a rate that ranges from 1% to 10% of the corrosion rate of ferrous materials, depending on the environment. Recently, EU RoHS and EU ELV prohibited the use of materials that adversely affect the environment, such as Pb, Hg, Cd, and $Cr^{+6}$. In this study, environmentally-friendly, Cr-free solutions (epoxy solution, acrylic solution, and urethane solution S-700) and organic/inorganic solution with Si; LRO-317) were used to evaluate the corrosion resistance of zinc-coated steel subjected to a saltwater spray for 72 hours. The coating of urethane solution (S-700) was best among the three kinds of solution with heat treatment during five minutes at $190^{\circ}F$. Test specimens with S-700 and LRO-317 coating were heat treated in a drying oven at 170, 180, 190, 200, and $210^{\circ}C$ for five minutes. The results show that the optimum corrosion resistance was $190^{\circ}C$ in EGI and $170^{\circ}C$ in HDGI, respectively.

Manufacture and Properties of Gypsum-Wood (Gypsum-Wood의 제조와 성질)

  • Lee, Jong-Shin;Kim, Soung-Joon
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.1
    • /
    • pp.83-90
    • /
    • 2008
  • Gypsum-wood composites were made by introducing inorganic substances into wood using calcium chloride, first treating solution, and sodium sulfate, secondary treating solution, by double diffusion process under atmospheric pressure at room temperature. The process conducted as follows: water saturated specimens were soaked in calcium chloride solutions at several concentration. Then the specimens were soaked further in saturated sodium sulfate solution, and they were leached in flowing tap water for 24h. To attain sufficient weight percent gain (WPG) values, the suitable concentration of calcium chloride and soaking time in saturated sodium sulfate solution were 20% and 48h, respectively. Inorganic substances were produced mainly in the lumina of tracheides. It was made sure that these substances were dihydrate gypsum($CaSO_4$ $2H_2O$) by X -ray microanalysis (SEM-EDX). The composites had good fire resistance due to low heat transfer rate of gypsum formed in wood. However, the composites had little decay resistances, because they showed high weight losses by test fungi attacks.

  • PDF

Effect of Solution Treatment on Corrosion Behavior of AZ91-2%Ca Magnesium Casting Alloy (주조용 AZ91-2%Ca 마그네슘 합금의 부식 거동에 미치는 용체화처리의 영향)

  • Moon, Jung-Hyun;Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.4
    • /
    • pp.190-199
    • /
    • 2015
  • The study is intended to investigate the effect of solution treatment on microstructure and corrosion behavior of AZ91(Mg-9%Al-1%Zn-0.3%Mn)-2%Ca casting alloy. In as-cast state, the AZ91-2%Ca alloy consisted of intermetallic ${\beta}(Mg_{17}Al_{12})$, $Al_8Mn_5$ and $Al_2Ca$ phases in ${\alpha}-(Mg)$ matrix. After the solution treatment, Al within the ${\alpha}-(Mg)$ matrix was distributed more homogeneously, along with the slight decrease in the total amount of intermetallic compounds. The corrosion resistance of the AZ91-2%Ca alloy was improved after the solution treatment. The microstructural examinations for the solution-treated samples revealed that the better corrosion resistance may well be related to the incorporation of more oxides and hydroxides such as $Al_2O_3$, $Al(OH)_3$, CaO and $Ca(OH)_2$ into the surface corrosion product without dissolution of the intermetallic phases along the grain boundaries.

Properties of Carbon Films Formed for Renewed Electric Power Energy by Electro-deposition (신 재생 에너지 활용을 위한 Carbon 박막의 특성)

  • Lee, Sang-Heon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.147-150
    • /
    • 2007
  • Electro-deposition of carbon film on silicon substrate in methanol solution was carried out with various current density, solution temperature and electrode spacing between anode and cathode. The carbon films with smooth surface morphology and high electrical resistance were formed when the distance between electrode was relatively wider. The electrical resistance of the carbon films were independent of both current density and solution temperature.

Electric Properties of Carbon Using Electrochemical Process (전기화학 프로세스에 의한 Carbon 특성)

  • Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.388-389
    • /
    • 2006
  • Electro-deposition of carbon film on silicon substrate in methanol solution was carried out with various current density, solution temperature and electrode spacing between anode and cathode. The carbon films with smooth surface morphology and high electrical resistance were formed when the distance between electrode was relatively wider. The electrical resistance of the carbon films were independent of both current density and solution temperature.

  • PDF

Fabrication of Carbon Thin Film by Electrochemical Method (전기화학 Carbon Film 합성)

  • Lee, Sang-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.128-129
    • /
    • 2007
  • Electrochemical method of carbon film on silicon substrate in methanol solution was carried out with various current density, solution temperature and electrode spacing between anode and cathode. The carbon films with smooth surface morphology and high electrical resistance were formed when the distance between electrode was relatively wider. The electrical resistance of the carbon films were independent of both current density and solution temperature.

  • PDF

Fabrication of DLC Using Electrodeposition (전기분해 DLC 합성)

  • Lee, Sang-Heon;Choi, Yong
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1265-1266
    • /
    • 2007
  • Electro-deposition of carbon film on silicon substrate in methanol solution was carried out with various current density, solution temperature and electrode spacing between anode and cathode. The carbon films with smooth surface morphology and high electrical resistance were formed when the distance between electrode was relatively wider. The electrical resistance of the carbon films were independent of both current density and solution temperature.

  • PDF

Improvement of Corrosion Resistance by Mg Films Deposited on Hot Dip Aluminized Steel using a Sputtering Method (용융알루미늄 도금 강판 상에 스퍼터링법으로 형성된 마그네슘 코팅막에 의한 내식성 향상)

  • Park, ae-Hyeok;Kim, Soon-Ho;Jeong, Jae-In;Yang, Ji-Hoon;Lee, Kyung-Hwang;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.224-230
    • /
    • 2018
  • In this study, Mg films were prepared on hot dip aluminized steel (HDA) by using a sputtering method as a high corrosion resistance coating. The corrosion resistance of the Mg films was improved by controlling the morphology and the crystal structure of films by adjusting the Ar gas pressure during the coating process. Anodic polarization measurement results confirm that the corrosion resistance of the Mg films was affected by surface morphology and crystal structure. The corrosion resistance of the Mg coated HDA specimen increased with decreasing crystal size of the Mg coating and it was also improved by forming a film with denser morphology. The crystal structure oriented at Mg(101) plane showed the best corrosion resistance among crystal planes of the Mg metals, which is attributed to its relatively low surface energy. Neutral salt spray test confirmed that corrosion resistance of HDA can be greatly improved by Mg coating, which is superior to that of HDG (hot dip galvanized steel). The reason for the improvement of the corrosion resistance of Mg films on hot dip aluminized steel was due to the barrier effect by the Mg corrosion products formed by the corrosion of the Mg coating layer.