• Title/Summary/Keyword: solution accuracy

Search Result 1,824, Processing Time 0.023 seconds

Application of spatiotemporal transformer model to improve prediction performance of particulate matter concentration (미세먼지 예측 성능 개선을 위한 시공간 트랜스포머 모델의 적용)

  • Kim, Youngkwang;Kim, Bokju;Ahn, SungMahn
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.329-352
    • /
    • 2022
  • It is reported that particulate matter(PM) penetrates the lungs and blood vessels and causes various heart diseases and respiratory diseases such as lung cancer. The subway is a means of transportation used by an average of 10 million people a day, and although it is important to create a clean and comfortable environment, the level of particulate matter pollution is shown to be high. It is because the subways run through an underground tunnel and the particulate matter trapped in the tunnel moves to the underground station due to the train wind. The Ministry of Environment and the Seoul Metropolitan Government are making various efforts to reduce PM concentration by establishing measures to improve air quality at underground stations. The smart air quality management system is a system that manages air quality in advance by collecting air quality data, analyzing and predicting the PM concentration. The prediction model of the PM concentration is an important component of this system. Various studies on time series data prediction are being conducted, but in relation to the PM prediction in subway stations, it is limited to statistical or recurrent neural network-based deep learning model researches. Therefore, in this study, we propose four transformer-based models including spatiotemporal transformers. As a result of performing PM concentration prediction experiments in the waiting rooms of subway stations in Seoul, it was confirmed that the performance of the transformer-based models was superior to that of the existing ARIMA, LSTM, and Seq2Seq models. Among the transformer-based models, the performance of the spatiotemporal transformers was the best. The smart air quality management system operated through data-based prediction becomes more effective and energy efficient as the accuracy of PM prediction improves. The results of this study are expected to contribute to the efficient operation of the smart air quality management system.

Optimization and Applicability Verification of Simultaneous Chlorogenic acid and Caffeine Analysis in Health Functional Foods using HPLC-UVD (HPLC-UVD를 이용한 건강기능식품에서 클로로겐산과 카페인 동시분석법 최적화 및 적용성 검증)

  • Hee-Sun Jeong;Se-Yun Lee;Kyu-Heon Kim;Mi-Young Lee;Jung-Ho Choi;Jeong-Sun Ahn;Jae-Myoung Oh;Kwang-Il Kwon;Hye-Young Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.2
    • /
    • pp.61-71
    • /
    • 2024
  • In this study, we analyzed chlorogenic acid indicator components in preparation for the additional listing of green coffee bean extract in the Health Functional Food Code and optimized caffeine for simultaneous analysis. We extracted chlorogenic acid and caffeine using 30% methanol, phosphoric acid solution, and acetonitrile-containing phosphoric acid and analyzed them at 330 and 280 nm, respectively, using liquid chromatography. Our analysis validation results yielded a correlation coefficient (R2) revealing a significance level of at least 0.999 within the linear quantitative range. The chlorogenic acid and caffeine detection and quantification limits were 0.5 and 0.2 ㎍/mL and 1.4, and 0.4 ㎍/mL, respectively. We confirmed that the precision and accuracy results were suitable using the AOAC validation guidelines. Finally, we developed a simultaneous chlorogenic acid and caffeine analysis approach. In addition, we confirmed that our analysis approach could simultaneously quantify chlorogenic acid and caffeine by examining the applicability of each formulation through prototypes and distribution products. In conclusion, the results of this study demonstrated that the standardized analysis would expectably increase chlorogenic acidcontaining health functional food quality control reliability.

The Photography as Technological Aesthetics (데크놀로지 미학으로서의 사진)

  • Jin, Dong-Sun
    • Journal of Science of Art and Design
    • /
    • v.11
    • /
    • pp.221-249
    • /
    • 2007
  • Today, photography is facing to the crisis of identity and dilemma of ontology from the digital imaging process in the new technology form. It is very important points to say rethinking of the traditional photographic medium, that has changed the way we view the world and ourselves is perhaps an understatement and that photography has transformed our essential understanding of reality. Now, no longer are photographic images regarded as the true automatic recording, innocent evidence and the mirror to the reality. Rather, photography constructs the world for our entertainment, helping to create the comforting illusions by which we live. The recognition that photographs are not constructions and reflections of reality, is the basis for the actual presence within the contemporary photographic world. It is shock. This thesis's aim is to look for the problems of photographic identity and ontological crisis that is controlling and regulating digital photographic imagery, allowing the reproduction of the electronic simulations era. Photography loses its special aesthetic status and becomes no more true information and, exclusively evidence by traditional film and paper that appeared both as a technological accuracy and as a medium-specific aesthetic. The result, photography is facing two crises, one is the photographic ontology(the introduction of computerized digital images) and the other is photographic epistemology(having to do broader changes in ethics, knowledge and culture). Taken together, these crises apparently threaten us with the death of photography, with the 'end' of photography and the culture it sustains. The thesis's meaning is to look into the dilemma of photography's ontology and epistemology, especially, automatical index and digital codes from its origin, meaning, and identity as the technological medium. Thus, in particular, thesis focuses on the analog imagery presence, from the nature in the material world, and the digital imagery presence from the cultural situations in our society. And also thesis's aim is to examine the main issues of the history of photography has been concentrated on the ontological arguments since the discovery of photography in 1839. Photography has never been only one static technology form. Rather, its nearly two centuries of technological development have been marked by numerous, competing of technological innovation and self revolution from the dual aspects. This thesis examines recent account of photography by the analysis of the medium's concept, meaning, identity between film base image and digital base image from the aspects of photographic ontology and epistemology. Thus, the structure of thesis is fairy straightforward to examine what appear to be two opposing view of photographic conditions and ontological situations. Thesis' view contrasts that figure out the value of photography according to its fundamental characteristic as a medium. Also, it seeks a possible solution to the dilemma of photographic ontology through the medium's origin from the early years of the nineteenth century to the raising questions about the different meaning(analog/digital) of photography, now. Finally, this thesis emphasizes and concludes that the photographic ontological crisis reflects to the paradoxical dynamic structure, that unsolved the origins of the medium, itself. Moreover, even photography is not single identity of the photographic ontology, and also can not be understood as having a static identity or singular status from the dynamic field of technologies, practices, and images.

  • PDF

Development of a Stock Trading System Using M & W Wave Patterns and Genetic Algorithms (M&W 파동 패턴과 유전자 알고리즘을 이용한 주식 매매 시스템 개발)

  • Yang, Hoonseok;Kim, Sunwoong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.63-83
    • /
    • 2019
  • Investors prefer to look for trading points based on the graph shown in the chart rather than complex analysis, such as corporate intrinsic value analysis and technical auxiliary index analysis. However, the pattern analysis technique is difficult and computerized less than the needs of users. In recent years, there have been many cases of studying stock price patterns using various machine learning techniques including neural networks in the field of artificial intelligence(AI). In particular, the development of IT technology has made it easier to analyze a huge number of chart data to find patterns that can predict stock prices. Although short-term forecasting power of prices has increased in terms of performance so far, long-term forecasting power is limited and is used in short-term trading rather than long-term investment. Other studies have focused on mechanically and accurately identifying patterns that were not recognized by past technology, but it can be vulnerable in practical areas because it is a separate matter whether the patterns found are suitable for trading. When they find a meaningful pattern, they find a point that matches the pattern. They then measure their performance after n days, assuming that they have bought at that point in time. Since this approach is to calculate virtual revenues, there can be many disparities with reality. The existing research method tries to find a pattern with stock price prediction power, but this study proposes to define the patterns first and to trade when the pattern with high success probability appears. The M & W wave pattern published by Merrill(1980) is simple because we can distinguish it by five turning points. Despite the report that some patterns have price predictability, there were no performance reports used in the actual market. The simplicity of a pattern consisting of five turning points has the advantage of reducing the cost of increasing pattern recognition accuracy. In this study, 16 patterns of up conversion and 16 patterns of down conversion are reclassified into ten groups so that they can be easily implemented by the system. Only one pattern with high success rate per group is selected for trading. Patterns that had a high probability of success in the past are likely to succeed in the future. So we trade when such a pattern occurs. It is a real situation because it is measured assuming that both the buy and sell have been executed. We tested three ways to calculate the turning point. The first method, the minimum change rate zig-zag method, removes price movements below a certain percentage and calculates the vertex. In the second method, high-low line zig-zag, the high price that meets the n-day high price line is calculated at the peak price, and the low price that meets the n-day low price line is calculated at the valley price. In the third method, the swing wave method, the high price in the center higher than n high prices on the left and right is calculated as the peak price. If the central low price is lower than the n low price on the left and right, it is calculated as valley price. The swing wave method was superior to the other methods in the test results. It is interpreted that the transaction after checking the completion of the pattern is more effective than the transaction in the unfinished state of the pattern. Genetic algorithms(GA) were the most suitable solution, although it was virtually impossible to find patterns with high success rates because the number of cases was too large in this simulation. We also performed the simulation using the Walk-forward Analysis(WFA) method, which tests the test section and the application section separately. So we were able to respond appropriately to market changes. In this study, we optimize the stock portfolio because there is a risk of over-optimized if we implement the variable optimality for each individual stock. Therefore, we selected the number of constituent stocks as 20 to increase the effect of diversified investment while avoiding optimization. We tested the KOSPI market by dividing it into six categories. In the results, the portfolio of small cap stock was the most successful and the high vol stock portfolio was the second best. This shows that patterns need to have some price volatility in order for patterns to be shaped, but volatility is not the best.