• Title/Summary/Keyword: soluble protein

Search Result 1,466, Processing Time 0.032 seconds

Heat-Induced Denaturation of Salt Soluble Protein Extracted from Spent Layer Meat (산란 노계육에서 추출한 염용성 단백질의 열변성에 관한 연구)

  • 이성기;장호선;김희주
    • Food Science of Animal Resources
    • /
    • v.18 no.3
    • /
    • pp.209-215
    • /
    • 1998
  • Effects of protein concentration, ionic strength, pH, and temperature range on the heat-induced denaturation of salt soluble protein extracted from spent layer meat were investigated. Viscosity of salt soluble protein heated at 65$^{\circ}C$ for 30 min began to increase sharply above 7 mg/ml of breast protein concentration, and above 21 mg/ml of leg protein concentration, respectively. Both turbidity and viscosity showed the highest value in cooked protein solution with pH 6.0 and 1% NaCl. The turbidity of salt soluble protein started to increase continuously from 40$^{\circ}C$ to 80$^{\circ}C$. The viscosity increased rapidly from 45$^{\circ}C$ to 60$^{\circ}C$ in breast protein, and increased from 50$^{\circ}C$ to 55$^{\circ}C$ in leg protein, respectively, and then kept relatively constant. Breast protein had higher viscosity than leg protein during heat-induced gelation. Therefore, salt soluble protein from spent layer meat was associated with denatured protein (turbidity change) prior to gelation (viscosity change) during heating. Breast protein showed lower thermal transition temperature, and better gel formation than leg protein during heating.

  • PDF

Evaluation of Gelation Properties of Salt-Soluble Proteins Extracted from Protaetia brevitarsis Larvae and Tenebrio molitor Larvae and Application to Pork Myofibrillar Protein Gel System

  • Ji Seon Choi;Geon Ho Kim;Ha Eun Kim;Min Jae Kim;Koo Bok Chin
    • Food Science of Animal Resources
    • /
    • v.43 no.6
    • /
    • pp.1031-1043
    • /
    • 2023
  • The purpose of this study was to investigate the functional properties of salt-soluble proteins obtained from Protaetia brevitarsis (PB) and Tenebrio molitor (TM) larvae, the interaction between these proteins and pork myofibrillar protein (MP) in a gel system. The gel properties of salt-soluble protein extracts showed that the PB had a higher viscosity than the TM protein. However, the TM protein had higher gel strength compared with the PB protein. The gelation characteristics of the pork MP gel systems added with lyophilized insect salt-soluble protein powder showed to decrease slightly viscosity compared with MP alone. Adding the TM or PB protein powder did not affect the pork MP's hydrophobicity and sulfhydryl group levels. Furthermore, the protein bands of the MP did not change with the type or amount of insect salt-soluble protein. The cooking yields of the pork MP gels containing PB or TM protein powder were higher than those without insect protein. Regardless of the type of insect salt-soluble protein added, the pork MP's gel strength decreased. Furthermore, as the level of insect powder increased, the surface protein structure became rough and porous. The results demonstrated that proteins extracted from PB and TM larvae interfered with the gelation of pork MP in a gel system.

Functional properties of protein from defatted sesame meal using the enzyme from Bacillus sp. CW-1121 (Bacillus sp. CW-1121이 생성하는 효소를 처리한 참깨박 단백질의 기능성)

  • Choi, C.;Chun, S.S.;Cho, Y.J.
    • Applied Biological Chemistry
    • /
    • v.36 no.3
    • /
    • pp.172-177
    • /
    • 1993
  • To extract insoluble proteins from sesame meal residue by microorganism, the sesame meal residue was treated with crude enzyme solution of Bacillus sp. CW-1121. The foaming capacity of salt soluble protein was quite lower than that of water soluble protein and the foaming stability of salt soluble protein decreased abruptly in 10 min., while it sustained for 30 min in case of water soluble protein. Emulsion capacities of all the protein fractions showed minimum value near isoelectric point of protein and salt soluble protein had lower emulsion capacities than that of water soluble protein. The emulsion stability of the protein was relatively stable for 30 min at $80^{\circ}C$. Oil and water absorption capacities of salt soluble protein were higher than those of water soluble protein.

  • PDF

Effects of Electron Beam Irradiation on Functional and Other Associated Properties of Pork Myofibrillar Salt-Soluble Proteins

  • Koh, Kwang-Hwan;Lee, Sam-Pin;Whang, Key
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.1
    • /
    • pp.73-77
    • /
    • 2006
  • Ground pork was irradiated with an electron beam (e-beam) at a dose of 0, 1.5, 3, 5 and 10 kGy and the changes in various functional and other associated properties of salt-soluble proteins extracted from the pork were evaluated. Irradiation did not affect turbidity and the disulfide content of pork salt-soluble protein, but the content of sulfhydryls and the hydrophobocity of salt-soluble protein increased. This indicates that protein degradation occurred when the pork was e-beam irradiated and that the sulfhydryls and hydrophobic moieties buried inside the proteins were exposed to the outside environment. However, these degraded protein molecules did not form large protein aggregates through disulfide bridges. The emulsifying capacity of the pork increased with irradiation, which could be the result from increased hydrophobicity of pork salt-soluble protein. Water holding capacity of pork was not affected bye-beam irradiation.

Technical Functional Properties of Water- and Salt-soluble Proteins Extracted from Edible Insects

  • Kim, Tae-Kyung;Yong, Hae In;Jeong, Chang Hee;Han, Sung Gu;Kim, Young-Boong;Paik, Hyun-Dong;Choi, Yun-Sang
    • Food Science of Animal Resources
    • /
    • v.39 no.4
    • /
    • pp.643-654
    • /
    • 2019
  • The amino acid composition, protein quality, and protein functionality of protein solution extracted from three edible insect species were investigated. We used 0.02% ascorbic acid and 0.58 M saline solution to extract water-soluble and salt-soluble proteins from the three insect species. Extracted protein solutions of Tenebrio molitor (TM), Allomyrina dichotoma (AD), and Protaetia brevitarsis seulensis (PB) were divided into six groups, according to species and solubility: WTM, WAD, WPB (water-soluble), and STM, SAD, and SPB (salt-soluble). Defatted TM had the highest protein content, but its protein solubility was the lowest, for both water and saline solutions. Amino acid composition differed by edible insect species and buffer type; SPB had the highest protein quality, followed by WPB. PB had a higher pH than the other species. Color values also differed among species. SPB had abundant high molecular weight proteins, compared with other treatments; and also had the highest foaming capacity, foam stability, and emulsifying capacity. In conclusion, PB is a good source of functional protein compared with the other studied species. Additionally, protein extraction using saline solution is promising as a useful method for improving edible insect protein functionality.

Genetic relationships and protein variations during development within the Drosophila melonogaster species group. ll. Analysis of soluble protein by 2DE (노랑초파리종군의 발생단계에 따른 단백질의 변화와 유전적 유연관계 2. 2DE에 의한 수용성 단백질의 분석)

  • 이택준;홍경자김남우
    • The Korean Journal of Zoology
    • /
    • v.37 no.2
    • /
    • pp.249-254
    • /
    • 1994
  • Soluble protein of the eight species of the Drosophila melanogaster species group was analyzed for three developmental stages of lanra, pupa and adult by 2DE. Genetic distances were calculated by Aquadro and Aviso's equation for three developmental stages, respectively. The dendrosrams showed the same patterns in three stages. The dendrograms showed that the melonogaster species group consisted of two clustered groups. Total soluble protein contents on three developmental stages of the eight species were compared. Closely related species showed resemblant protein changing pattern during development, and their developmental changing patterns were different according to the subgroup.

  • PDF

Production of Soluble Crude Protein Using Cellulolytic Fungi on Rice Stubble as Substrate under Waste Program Management

  • Vibha, Vibha;Sinha, Asha
    • Mycobiology
    • /
    • v.33 no.3
    • /
    • pp.147-149
    • /
    • 2005
  • The investigation was undertaken to enhance the decomposition process by pre-treatment of rice stubble, having higher concentration of lignin. Air-dried rice stubble was treated with 1.8 liter of 1% NaOH and autoclaved. Six cellulolytic fungi, Trichoderma harzianum, Penicillium citrinum, Curvularia lunata, Aspergillus flavus and Alternaria alternata were grown in basal synthetic medium along with delignified rice-residue as carbon source for production of soluble crude protein. Though the loss of cellulose has been observed by all of them but having a considerable status in the presence of T. harzianum and T. harzianum yielded highest percentage of crude protein (27.99%) with biomass of 375 mg, whereas the lowest protein value (17.91%) was recorded in case of A. niger with biomass of 422 mg. Among the imperfect fungi, T. harzianum was the most potent. Effects of incubation period and nitrogen sources on soluble crude protein production by T. harzianum were also undertaken in this study. Fifth day of incubation period and potassium nitrate as nitrogen source among other nitrogen sources was found most appropriate for soluble crude protein production by the mentioned organism.

Effects of Protein Unfolding and Soluble Aggregates Formation on the Gel Strength of Whey Proteins

  • Park, Moon-Jung;Michael E. Mangino
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.4
    • /
    • pp.281-284
    • /
    • 1997
  • Heat-induced gelation is an important functional property of whey proteins. Preheating of calcium reduced whey was reported to increase gel strength. 5% whey-protein solutions were preheated at pH7 and at various temperatures(60~8$0^{\circ}C$) for 15 minutes. The amount of soluble aggregates and denaturation enthalpy of preheated whey proteins were measured. Preheating temperature was negatively correlated with denaturation enthalpy($R^2$=0.857, P=0.08) and positive with the amount of soluble aggregates($R^2$=0.921, P=0.002). Denaturation enthalpy was negatively correlated with gel strength($R^2$=0.93, P=0.002). Soluble aggregates and gel strength were positively correlated($R^2$=0.972, P=0.0003). The formation of three dimensional gel network requires controlled protein denaturation and aggregation. Since preheating leads to the partial denaturation of proteins and the formation of soluble aggregates, preheated whey proteins have a higher gel strength than non-preheated one.

  • PDF

Characterization of Cooked Meat Models using Grasshopper (Sphenarium purpurascens) Soluble Protein Extracted by Alkalisation and Ultrasound as Meat-Extender

  • Cruz-Lopez, Salvador Osvaldo;Escalona-Buendia, Hector Bernardo;Roman-Guerrero, Angelica;Dominguez-Soberanes, Julieta;Alvarez-Cisneros, Yenizey Merit
    • Food Science of Animal Resources
    • /
    • v.42 no.3
    • /
    • pp.536-555
    • /
    • 2022
  • The most abundant Orthoptera in Mexico is a small grasshopper (Sphenarium purpurascens) which is considered a food source with increased nutritional value due to its high protein content. Insect proteins have gained relevance because of their high potential as gelling, texturing, and extender agents in the food industry. The objective of this study was to evaluate the effect of substituting meat with a soluble protein extract from grasshopper obtained by alkalisation or alkalisation-piezoelectric ultrasound, on the techno-functional, physicochemical, and sensory characteristics of cooked meat models (sausages). The soluble protein was extracted in NaHCO3 pH 8 and a piezoelectric ultrasound 5-mm sonotrode at 20 kHz with 99% amplitude. Different formulations with meat substitution: 0%, 5%, 10%, and 15% were prepared and characterised for their rheological behaviour, emulsion stability, weight loss by cooking, total protein content, colour, and texture. Sensory evaluation was conducted with consumers using a test involving check-all-that-apply and overall liking. The alkalisation-piezoelectric ultrasound method improved the solubility and the techno-functional properties of the soluble grasshopper protein when applied in sausages at maximum levels of 10% meat substitution. The sensory evaluation indicated that the formulation with 5% meat substitution exhibited the same acceptability as the control sample. Given these results, the soluble protein treated with alkalisation and piezoelectric ultrasound could be used as an extender in meat products.

Interactions between beef salt-soluble proteins and elephant foot yam (Amorphophallus campanulatus) flour in heat-induced gel matrix development

  • Widyastuti, Eny Sri;Rosyidi, Djalal;Radiati, Lilik Eka;Purwadi, Purwadi
    • Journal of Animal Science and Technology
    • /
    • v.62 no.4
    • /
    • pp.533-542
    • /
    • 2020
  • The objective of this study was to observe the interactions between salt-soluble proteins extracted from beef and elephant foot yam (Amorphophallus campanulatus) flour in heat-induced gel matrix development. The effect of salt concentration; 0.5%, 1.0%, 1.5%, and 2.0% in weight/weight basis (w/w), during protein extraction on pH, salt-soluble protein concentration and myofibril fractions of beef extract was determined firstly, and no significant effect was found. The beef salt-soluble proteins extracted using salt solution at different concentrations were then added with elephant foot yam flour at 5%, 10%, and 15% w/w, gelatinized at 90℃ for 20 min, and cooled down at 4℃ for 12 h. The interactions between beef salt-soluble proteins and elephant foot yam flour resulted in an improved gel strength (p < 0.01) and the addition level of elephant foot yam flour affected the pH, instrumental color, moisture, crude protein, and ash content significantly. The addition of elephant foot yam flour also reduced the size of the pores in the gel matrix as shown by scanning electron microscope (SEM) photographs. These suggest that elephant foot yam flour well interacts with beef salt-soluble proteins to form gel matrix.