Browse > Article
http://dx.doi.org/10.5851/kosfa.2022.e22

Characterization of Cooked Meat Models using Grasshopper (Sphenarium purpurascens) Soluble Protein Extracted by Alkalisation and Ultrasound as Meat-Extender  

Cruz-Lopez, Salvador Osvaldo (Departamento de Biotecnologia, Universidad Autonoma Metropolitana)
Escalona-Buendia, Hector Bernardo (Departamento de Biotecnologia, Universidad Autonoma Metropolitana)
Roman-Guerrero, Angelica (Departamento de Biotecnologia, Universidad Autonoma Metropolitana)
Dominguez-Soberanes, Julieta (Escuela de Direccion de Negocios Alimentarios. Universidad Panamericana)
Alvarez-Cisneros, Yenizey Merit (Departamento de Biotecnologia, Universidad Autonoma Metropolitana)
Publication Information
Food Science of Animal Resources / v.42, no.3, 2022 , pp. 536-555 More about this Journal
Abstract
The most abundant Orthoptera in Mexico is a small grasshopper (Sphenarium purpurascens) which is considered a food source with increased nutritional value due to its high protein content. Insect proteins have gained relevance because of their high potential as gelling, texturing, and extender agents in the food industry. The objective of this study was to evaluate the effect of substituting meat with a soluble protein extract from grasshopper obtained by alkalisation or alkalisation-piezoelectric ultrasound, on the techno-functional, physicochemical, and sensory characteristics of cooked meat models (sausages). The soluble protein was extracted in NaHCO3 pH 8 and a piezoelectric ultrasound 5-mm sonotrode at 20 kHz with 99% amplitude. Different formulations with meat substitution: 0%, 5%, 10%, and 15% were prepared and characterised for their rheological behaviour, emulsion stability, weight loss by cooking, total protein content, colour, and texture. Sensory evaluation was conducted with consumers using a test involving check-all-that-apply and overall liking. The alkalisation-piezoelectric ultrasound method improved the solubility and the techno-functional properties of the soluble grasshopper protein when applied in sausages at maximum levels of 10% meat substitution. The sensory evaluation indicated that the formulation with 5% meat substitution exhibited the same acceptability as the control sample. Given these results, the soluble protein treated with alkalisation and piezoelectric ultrasound could be used as an extender in meat products.
Keywords
edible insect; soluble protein; functional properties; sausages; sensory;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Kim HW, Setyabrata D, Lee Y, Jones OG, Kim YHB. 2017. Effect of house cricket (Acheta domesticus) flour addition on physicochemical and textural properties of meat emulsion under various formulations. J Food Sci 82:2787-2793.   DOI
2 Mishyna M, Keppler JK, Chen J. 2021. Techno-functional properties of edible insect proteins and effects of processing. Curr Opin Colloid Interface Sci 56:101508.   DOI
3 Bussler S, Rumpold BA, Jander E, Rawel HM, Schluter OK. 2016. Recovery and techno-functionality of flours and proteins from two edible insect species: Meal worm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae. Heliyon 2:E00218.   DOI
4 Urbina P, Marin C, Sanz T, Rodrigo D, Martinez A. 2021. Effect of HHP, enzymes and gelatin on physicochemical factors of gels made by using protein isolated from common cricket (Acheta domesticus). Foods 10:858.   DOI
5 Melo Ruiz V, Sandoval-Trujillo H, Quirino-Barreda T, Sanchez-Herrera K, Diaz-Garcia R, Calvo-Carrillo C. 2015. Chemical composition and amino acids content of five species of edible Grasshoppers from Mexico. Emir J Food Agric 27:654-658.   DOI
6 Smarzynski K, Sarbak P, Musial S, Jezowski P, Piatek M, Kowalczewski PL. 2019. Nutritional analysis and evaluation of the consumer acceptance of pork pate enriched with cricket powder - Preliminary study. Open Agric 4:159-163.   DOI
7 Sogari G, Menozzi D, Mora C. 2019. The food neophobia scale and young adults' intention to eat insect products. Int J Consum Stud 43:68-76.   DOI
8 Tellez-Morales JA, Hernandez-Santo B, Rodriguez-Miranda J. 2020. Effect of ultrasound on the techno-functional properties of food components/ingredients: A review. Ultrason Sonochem 61:104787.   DOI
9 Torruco-Uco JG, Hernandez-Santos B, Herman-Lara E, Martinez-Sanchez CE, Juarez-Barrientos JM, Rodriguez-Miranda J. 2019. Chemical, functional and thermal characterization, and fatty acid profile of the edible grasshopper (Sphenarium purpurascens Ch.). Eur Food Res Technol 245:285-292.   DOI
10 van Huis A. 2016. Edible insects are the future? Proc Nutr Soc 75:294-305.   DOI
11 Wang S, Zhou B, Shen Y, Wang Y, Peng Y, Niu L, Yang X, Li S. 2021. Effect of ultrasonic pretreatment on the emulsification properties of Clanis bilineata tingtauica Mell protein. Ultrason Sonochem 80:105823.   DOI
12 Gibis M, Schuh V, Allard K, Weiss J. 2017. Influence of molecular weight and degree of substitution of various carboxymethyl celluloses on unheated and heated emulsion-type sausage models. Carbohydr Polym 159:76-85.   DOI
13 Botella-Martinez C, Lucas-Gonzalez R, Perez-Alvarez JA, Fernandez-Lopez J, Viuda-Martos M. 2021. Assessment of chemical composition and antioxidant properties of defatted flours obtained from several edible insects. Food Sci Technol Int 27:383-391.   DOI
14 Choi BD, Wong NAK, Auh JH. 2017a. Defatting and sonication enhances protein extraction from edible insects. Korean J Food Sci Anim Resour 37:955-961.   DOI
15 da Silva Lucas AJ, de Oliveira LM, da Rocha M, Prentice C. 2020. Edible insects: An alternative of nutritional, functional and bioactive compounds. Food Chem 311:126022.   DOI
16 Jaeger SR, Chheang SL, Jin D, Roigard CM, Ares G. 2020. Check-all-that-apply (CATA) questions: Sensory term citation frequency reflects rated term intensity and applicability. Food Qual Prefer 86:103986.   DOI
17 Jeong MS, Lee SD, Cho SJ. 2021. Effect of three defatting solvents on the techno-functional properties of an edible insect (Gryllus bimaculatus) protein concentrate. Molecules 26:5307.   DOI
18 Mishyna M, Martinez JJI, Chen J, Benjamin O. 2019. Extraction, characterization and functional properties of soluble proteins from edible grasshopper (Schistocerca gregaria) and honey bee (Apis mellifera). Food Res Int 116:697-706.   DOI
19 Koseckova P, Zverina O, Pechova M, Krulikova M, Duborska E, Borkovcova M. 2022. Mineral profile of cricket powders, some edible insect species and their implication for gastronomy. J Food Compos Anal 107:104340.   DOI
20 Megido R, Gierts C, Blecker C, Brostaux Y, Haubruge E, Alabi T, Francis F. 2016. Consumer acceptance of insect-based alternative meat products in Western countries. Food Qual Prefer 52:237-243.   DOI
21 Pintado T, Delgado-Pando G. 2020. Towards more sustainable meat products: Extenders as a way of reducing meat content. Foods 9:1044.   DOI
22 Scholliers J, Steen L, Fraeye I. 2020a. Gelation of a combination of insect and pork proteins as affected by heating temperature and insect: Meat ratio. Food Res Int 137:109703.   DOI
23 Shelomi M. 2016. The meat of affliction: Insects and the future of food as seen in Expo 2015. Trends Food Sci Technol 56:175-179.   DOI
24 Su J, Cavaco-Paulo A. 2021. Effect of ultrasound on protein functionality. Ultrason Sonochem 76:105653.   DOI
25 Udomsil N, Imsoonthornruksa S, Gosalawit C, Ketudat-Cairns M. 2019. Nutritional values and functional properties of house cricket (Acheta domesticus) and field cricket (Gryllus bimaculatus). Food Sci Technol Res 25:597-605.
26 van Huis A. 2020. Insects as food and feed, a new emerging agricultural sector: A review. J Insects Food Feed 6:27-44.   DOI
27 Yi L, Lakemond CMM, Sagis LMC, Eisner-Schadler V, van Huis A, van Boekel MAJS. 2013. Extraction and characterisation of protein fractions from five insect species. Food Chem 141:3341-3348.   DOI
28 Guo A, Jiang J, True AD, Xiong YL. 2021. Myofibrillar protein cross-linking and gelling behavior modified by structurally relevant phenolic compounds. J Agric Food Chem 69:1308-1317.   DOI
29 Rodriguez-Miranda J, Alcantar-Vazquez JP, Zuniga-Marroquin T, Juarez-Barrientos JM. 2019. Insects as an alternative source of protein: A review of the potential use of grasshopper (Sphenarium purpurascens Ch.) as a food ingredient. Eur Food Res Technol 245:2613-2620.   DOI
30 Yi L, Van Boekel MAJS, Boeren S, Lakemond CMM. 2016. Protein identification and in vitro digestion of fractions from Tenebrio molitor. Eur Food Res Technol 242:1285-1297.   DOI
31 Ibarra-Herrera CC, Acosta-Estrada B, Chuck-Hernandez C, Serrano-Sandoval SN, Guardado-Felix D, Perez-Carrillo E. 2020. Nutritional content of edible grasshopper (Sphenarium purpurascens) fed on alfalfa (Medicago sativa) and maize (Zea mays). CYTA J Food 18:257-263.   DOI
32 Kim HW, Setyabrata D, Lee YJ, Jones OG, Kim YHB. 2016. Pre-treated mealworm larvae and silkworm pupae as a novel protein ingredient in emulsion sausages. Innov Food Sci Emerg Technol 38:116-123.   DOI
33 Yi L, Van Boekel MAJS, Lakemond CMM. 2017. Extracting Tenebrio molitor protein while preventing browning: Effect of pH and NaCl on protein yield. J Insects Food Feed 3:21-31.   DOI
34 Codex Alimentarius. 1995. Norma general para los aditivos alimentarios. Codex Stan, 192. Joint FAO/WHO.
35 Zhang Z, Regenstein JM, Zhou P, Yang Y. 2017. Effects of high intensity ultrasound modification on physicochemical property and water in myofibrillar protein gel. Ultrason Sonochem 34:960-967.   DOI
36 AOAC. 2000. Official methods of analysis of AOAC International. 17th ed. AOAC International, Washington, DC, USA.
37 Ares G, Antunez L, Gimenez A, Roigard CM, Pineau B, Hunter DC, Jaeger SR. 2014. Further investigations into the reproducibility of check-all-that-apply (CATA) questions for sensory product characterization elicited by consumers. Food Qual Prefer 36:111-121.   DOI
38 Jambrak AR, Lelas V, Mason TJ, Kresic G, Badanjak M. 2009. Physical properties of ultrasound treated soy proteins. J Food Eng 93:386-393.   DOI
39 Janssen RH, Vincken JP, van den Broek LAM, Fogliano V, Lakemond CMM. 2017. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J Agric Food Chem 65:2275-2278.   DOI
40 Jongema Y. 2017. List of edible insect species of the world. Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands.
41 Kim TK, Lee MH, Cha JY, Kim J, Kang MC, Yong HI, Jung S, Choi YS. 2022. Use of edible insects in thermal-induced protein gels containing porcine myofibrillar protein. J Insects Food Feed 0:1-10.
42 Kingwascharapong P, Chaijan M, Karnjanapratum S. 2021. Ultrasound-assisted extraction of protein from Bombay locusts and its impact on functional and antioxidative properties. Sci Rep 11:17320.   DOI
43 Choi JH, Yong HI, Ku SK, Kim TK, Choi YS. 2019. The quality characteristics of pork patties according to the replacement of mealworm (Tenebrio molitor L.). Korean J Food Cook Sci 35:441-449.   DOI
44 Zhao X, Vazquez-Gutierrez JL, Johansson DP, Landberg R, Langton M. 2016. Yellow mealworm protein for food purposes - extraction and functional properties. PLOS ONE 11:e0147791.   DOI
45 Kim TK, Lee MH, Yong HI, Jung S, Paik HD, Jang HW, Choi YS. 2020. Effect of interaction between mealworm protein and myofibrillar protein on the rheological properties and thermal stability of the prepared emulsion systems. Foods 9:1443.   DOI
46 Kim TK, Yong HI, Kim YB, Kim HW, Choi YS. 2019. Edible insects as a protein source: A review of public perception, processing technology, and research trends. Food Sci Anim Resour 39:521-540.   DOI
47 Kinyuru JN, Kenji GM, Njoroge MS. 2009. Process development, nutrition and sensory qualities of wheat buns enriched with edible termites (Macrotermes subhylanus) from Lake Victoria region, Kenya. Afr J Food Agric Nutr Dev 9.
48 Kourimska L, Adamkova A. 2016. Nutritional and sensory quality of edible insects. NFS J 4:22-26.   DOI
49 Cruz-Lopez SO, Alvarez-Cisneros YM, Dominguez-Soberanes J, Escalona-Buendia HB, Sanchez CN. 2022. Physicochemical and sensory characteristics of sausages made with grasshopper (Sphenarium purpurascens) flour. Foods 11:704.   DOI
50 Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254.   DOI
51 Choi YS, Kim TK, Choi HD, Park JD, Sung JM, Jeon KH, Paik HD, Kim YB. 2017b. Optimization of replacing pork meat with yellow worm (Tenebrio molitor L.) for frankfurters. Korean J Food Sci Anim Resour 37:617-625.   DOI
52 Montowska M, Kowalczewski PL, Rybicka I, Fornal E. 2019. Nutritional value, protein and peptide composition of edible cricket powders. Food Chem 289:130-138.   DOI
53 Cuj-Laines R, Hernandez-Santos B, Reyes-Jaquez D, Delgado-Licon E, Juarez-Barrientos JM, Rodriguez-Miranda J. 2018. Physicochemical properties of ready-to-eat extruded nixtamalized maize-based snacks enriched with grasshopper. Int J Food Sci Technol 53:1889-1895.   DOI
54 de Carvalho NM, Madureira AR, Pintado ME. 2020. The potential of insects as food sources: A review. Crit Rev Food Sci Nutr 60:3642-3652.   DOI
55 Dobermann D, Swift JA, Field LM. 2017. Opportunities and hurdles of edible insects for food and feed. Nutr Bull 42:293-308.   DOI
56 Li K, Fu L, Zhao YY, Xue SW, Wang P, Xu XL, Bai YH. 2020. Use of high-intensity ultrasound to improve emulsifying properties of chicken myofibrillar protein and enhance the rheological properties and stability of the emulsion. Food Hydrocoll 98:105275.   DOI
57 Maehre HK, Dalheim L, Edvinsen GK, Elvevoll EO, Jensen IJ. 2018. Protein determination-Method matters. Foods 7:5.   DOI
58 Majzoobi M, Abedi E, Farahnaky A, Aminlari M. 2012. Functional properties of acetylated glutenin and gliadin at varying pH values. Food Chem 133:1402-1407.   DOI
59 Mintah BK, He R, Dabbour M, Xiang J, Agyekum AA, Ma H. 2019. Techno-functional attribute and antioxidative capacity of edible insect protein preparations and hydrolysates thereof: Effect of multiple mode sonochemical action. Ultrason Sonochem 58:104676.   DOI
60 Park YS, Choi YS, Hwang KE, Kim TK, Lee CW, Shin DM, Han SG. 2017. Physicochemical properties of meat batter added with edible silkworm pupae (Bombyx mori) and transglutaminase. Korean J Food Sci Anim Resour 37:351-359.   DOI
61 Purschke B, Tanzmeister H, Meinlschmidt P, Baumgartner S, Lauter K, Jager H. 2018. Recovery of soluble proteins from migratory locust (Locusta migratoria) and characterisation of their compositional and techno-functional properties. Food Res Int 106:271-279.   DOI
62 Scholliers J, Steen L, Fraeye I. 2020b. Partial replacement of meat by superworm (Zophobas morio larvae) in cooked sausages: Effect of heating temperature and insect: Meat ratio on structure and physical stability. Innov Food Sci Emerg Technol 66:102535.   DOI
63 Serrano Limon G, Ramos Elorduy J. 1989. Biologia de Sphenarium purpurascens (Charpentier) y algunos aspectos de su comportamiento (Orthoptera: Acrididae). Inst Biol Univ Nac Autonoma Mex Iheringia Ser Zool 59:139-152.
64 van Huis A, Van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P. 2013. Edible insects: Future prospects for food and feed security. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. FAO Forestry Paper no. 171.