• 제목/요약/키워드: soluble calcium

검색결과 314건 처리시간 0.022초

Reducing Phosphorus Release from Paddy Soil by Coal Ash and Phospho-Gypsum Mixture

  • Lee, Chang-Hoon;Lee, Yong-Bok;Lee, Hyub;Ha, Byung-Yun;Kim, Pil-Joo
    • 한국환경농학회지
    • /
    • 제24권1호
    • /
    • pp.12-16
    • /
    • 2005
  • As a silicate source to rice, a coal ash was selected and mixed with phosphor-gypsum (50:50, wt $wt^{-1}$) to reduce the potential of boron toxicity and to supply calcium element. We expected that high con tent of calcium in this mixture might convert water-soluble phosphorus to less soluble forms and then reduce the release of soil phosphorus to surface runoff. The mixture was applied with the rate of 0, 20, 40, and 60 Mg $ha^{-1}$ in paddy soil (Nagdong series, a somewhat excessively drained loamy fine sand) in Daegok, Jinju, Korea The mixture reduced significantly water-soluble phosphorus (W-P) in the surface soils by shifting from W-P and Fe-P to Ca-P and Al-P during whole rice cultivation. In contrast with W-P, plant available phosphorus increased significantly with the mixture application due to high content of phosphorus and silicate in the mixture. The mixture of coal ash and phosphor-gypsum (50:50, wt $wt^{-l}$) would be a good alternative to reduce a phosphorus export in rice paddy soil together with increasing rice yields.

Expression and phosphorylation analysis of soluble proteins and membrane-localised receptor-like kinases from Arabidopsis thaliana in Escherichia coli

  • Oh, Eun-Seok;Eva, Foyjunnaher;Kim, Sang-Yun;Oh, Man-Ho
    • Journal of Plant Biotechnology
    • /
    • 제45권4호
    • /
    • pp.315-321
    • /
    • 2018
  • Molecular and functional characterization of proteins and their levels is of great interest in understanding the mechanism of diverse cellular processes. In this study, we report on the convenient Escherichia coli-based protein expression system that allows recombinant of soluble proteins expression and cytosolic domain of membrane-localised kinases, followed by the detection of autophosphorylation activity in protein kinases. This approach is applied to regulatory proteins of Arabidopsis thaliana, including 14-3-3, calmodulin, calcium-dependent protein kinase, TERMINAL FLOWER 1(TFL1), FLOWERING LOCUS T (FT), receptor-like cytoplasmic kinase and cytoplasmic domain of leucine-rich repeat-receptor like kinase proteins. Our Western blot analysis which uses phospho-specific antibodies showed that five putative LRR-RLKs and two putative RLCKs have autophosphorylation activity in vitro on threonine and/or tyrosine residue(s), suggesting their potential role in signal transduction pathways. Our findings were also discussed in the broader context of recombinant expression and biochemical analysis of soluble and membrane-localised receptor kinases in microbial systems.

갑오징어(Sepia esculenta)갑 칼슘으로 회수한 surimi 가공폐수 단백질의 어묵소재로서 이용 (Utilization of a Soluble Protein Recovered from Surimi Wastewater by Calcium Powder of Cuttle, Sepia esculents Bone)

  • 김진수;조문래;허민수
    • 한국수산과학회지
    • /
    • 제36권3호
    • /
    • pp.204-209
    • /
    • 2003
  • Utilization of soluble protein recovered from surimi wastewater using calcium powder of cuttle bone were examined. The crude ash content of the heat-induced surimi gel was increased linearly by increasing substitution ratio of recovered protein-ATC toward commercial surimi. Moisture (approximately $76\%$) and lipid $(0.2\%)$ contents were not change, but their protein contents were decreased 15.7 to $14.3\%$ depend on increasing of substitution ratio. The white index of the heat-induced surimi gel by color meter was increased up to $10\%$ of substitution ratio. There were no difference between $0\%\;and\;5\%$ substituted surimi gel in the gel strength. The sensory score on white index and texture of the heat-induced surimi gel did not change in 0 to $10\%$ as a substitution ratio of recovered protein-ATC toward commercial surimi, while decreased in more $15\%.$ The optimal substitution ratio of recovered protein-ATC as a bulking agent was $10\%.$ The heat-induced surimi gel prepared with $10\%$ substitution of recovered protein-ATC was similar to the content and composition of total amino. acids, and superior to calcium content and the ratio of calcium and phosphorus toward those of commercial surimi.

The Role of $Ca^{2+}$ in Retardation Effects of Benzyladenine on the Senescence of Wheat (Triticum aestivum L.) Leaves

  • Hong, Kee-Jong;Jin, Chang-Duck;Hong, Young-Nam
    • Journal of Plant Biology
    • /
    • 제39권2호
    • /
    • pp.113-121
    • /
    • 1996
  • The role of Ca2+ on benzyladenine (BA)-induced senescence retardation in mature wheat (Triticum aestivum L.) primary leaves was investigated. When an extracellular calcium chelator, ethylene glycol-bis-($\beta$-aminoethylether)-N, N'-tetraacetic acid (EGTA) together with BA, was applied to senescing leaves for 4 days of dark incubation, the content of chlorophyll and soluble protein decreased rapidly. And, the content of malondialdehyde (MDA), known to be a degradation product of membrane lipids, increased compared with the BA alone control. The BA-EGTA combination also caused the stimulation of protease and RNase activity and a rapid loss of catalase activity owing to the decling of BA effects. In the case of treatment with only intracellular calcium antagonist 3, 4, 5-trimethoxybenzoic acid 8-(diethylamino) octyl ester (TMB-8) without the BA addition, the chlorophyll content at day 4 after dark incubation decreased in paralled with the increasing concentration of the antagonist. In addition, the chlorophyll content at 10-5 M calcium ionophore A23187 treatment in the absence of BA was similar to that of the BA alone treatment. These results suggest that calcium may mediate the retardation effect of BA on leaf senescence by acting as a second messenger and that the calcium input from cell organelles, as well as the calcium inflow from intercellular spaces and cell walls, may be involved in modulating cytosolic calcium levels related to BA action.

  • PDF

Effect of High-Molecular-Weight Poly-$\gamma$-Glutamic Acid from Bacillus subtilis (chungkookjang) on Ca Solubility and Intestinal Absorption

  • PARK CHUNG;CHOI YOON-HO;SHIN HYUN-JIN;POO HARYOUNG;SONG JAE JUN;KIM CHUL-JOONG;SUNG MOON-HEE
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권4호
    • /
    • pp.855-858
    • /
    • 2005
  • The bioavailability of Ca is currently one of the most important topics in nutrition research and is correlated with gastrointestinal solubility. Thus, to increase the solubility of calcium, this study was undertaken to examine the effect of $\gamma$-PGA on intestinal Ca solubility. The calcium solubility increased when the amount of $\gamma$-PGA was increased, due to the inhibition of the formation of an insoluble Ca complex with phosphate. Therefore, when $\gamma$-PGA-500 (avg. MW 5,000 kDa) was added at 0.5 mg/ml, $75\%$ of the total Ca was soluble. The amount of soluble Ca uptake in the small intestine was investigated using Balb/c mice as an animal model system. The soluble Ca uptake in the mice orally administered with $\gamma$-PGA-500 (avg. MW 5,000 kDa) was significantly higher than that in the $\gamma$-PGA-l00 (avg. MW 1,000 kDa)-administered mice (P<0.05). Accordingly, these results strongly support the notion that the molecular size of $\gamma$-PGA is correlated with Ca solubility. The effects of other factors, such as casein phosphopeptide and vitamin D, on intestinal Ca absorption have also previously been investigated. Therefore, it is hoped that the present observations will help clarify the role of $\gamma$-PGA in Ca solubility and its industrial application as an additive.

Combined effects of a chemically cross-linked porcine collagen membrane and highly soluble biphasic calcium phosphate on localized bone regeneration

  • Kim, You-Kyoung;An, Yin-Zhe;Cha, Jae-Kook;Lee, Jung-Seok;Jung, Ui-Won;Choi, Seong-Ho
    • 대한치과의사협회지
    • /
    • 제56권12호
    • /
    • pp.667-685
    • /
    • 2018
  • Objectives: Aim of this study was to evaluate bone regenerative efficacy of a chemically cross-linked porcine collagen membrane (CM) when used in combination with highly soluble biphasic calcium phosphate (BCP). Materials and methods: Physiochemical properties of the experimental collagen membrane were analyzed. Four circumferential defects with diameter of 8 mm were created in each calvarium of New Zealand white rabbits (n = 10). Defects were randomly allocated to one of following 4 groups: 1) BCP-CM (BCP (20% hydroxyapatite/80% ${\beta}$-tricalcium phosphate) covered with the prepared collagen membrane), 2) BCP (only BCP used), 3) CM (only the prepared collagen membrane used), and 4) C (control; only blood clot). After 2 weeks (n = 5) and 8 weeks (n = 5), histologic and histomorphometric analyses were performed. Results: The experimental collagen membrane exhibited dense and compact structure, relatively high tensile strength and lower degradability. Histologic analyses revealed that new bone increased rapidly at 2 weeks, while defect was preserved at 8 weeks. Histomorphometric analyses revealed that the new bone areas increased in the BCP-grafted groups over 8 weeks, with BCP-CM exhibiting greater total augmented area than that of BCP group both at 2 weeks ($27.12{\pm}3.99$ versus $21.97{\pm}2.27mm^2$) and 8 weeks ($25.75{\pm}1.82$ versus $22.48{\pm}1.10mm^2$) (P < 0.05). Conclusions: The experimental collagen membrane successfully preserved localized defect for 8 weeks despite early rapid resorption of BCP. Within the study limitations, combined use of the chemically cross-linked porcine collagen membrane and highly soluble BCP aided localized bone regeneration.

  • PDF

Immobilization Imparts Stability to Watermelon Urease to Work in Water Miscible Organic Media

  • Prakash, Om;Upadhyay, Lata Sheo Bachan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권2호
    • /
    • pp.140-145
    • /
    • 2006
  • The behaviour of alginate immobilized and soluble watermelon (Citrullus vulgaris) urease in water miscible organic solvents like, acetonitrile, dimethylformamide (DMF), ethanol, methanol, and propanol is described. The organic solvents exhibited a concentration dependent inhibitory effect on both the immobilized and the soluble urease in the presence of urea. Pretreatment of soluble enzyme preparations with organic solvents in the absence of substrate for 10 min at $30^{\circ}C$ led to rapid loss in the activity, while similar pretreatment of immobilized urease with 50% (v/v) of ethanol, propanol, and acetonitrile was ineffective. Time-dependent inactivation of immobilized urease, both in the presence and in the absence of urea, revealed stability for longer duration of time even at very high concentration of organic solvents. The soluble enzyme, on the other hand, was rapidly inactivated even at fairly lower concentrations. The results suggest that the immobilization of watermelon urease in calcium alginate make it suitable for its application in organic media. The observations are discussed.

Evaluation of Salt, Microbial Transglutaminase and Calcium Alginate on Protein Solubility and Gel Characteristics of Porcine Myofibrillar Protein

  • Hong, Geun-Pyo;Chin, Koo-Bok
    • 한국축산식품학회지
    • /
    • 제30권5호
    • /
    • pp.746-754
    • /
    • 2010
  • Response surface methodology was adopted to model and optimize the effects of microbial transglutaminase (TG) and calcium alginate (CA) systems of various ratios on the gelation characteristics of porcine myofibrillar protein (MP) at various salt levels. The CA system consisting of sodium alginate (SA), calcium carbonate (CC) and glucono-$\delta$-lactone (GdL) showed no remarkable changes in the salt-soluble fraction, and only minor effects on electrostatic interactions were observed. Increasing CA concentration caused acid-induced hydrophobic interactions in MPs, resulting in increased MP gel strength. The TG system, containing TG and sodium caseinate (SC), induced cold-set MP gelation by formation of covalent bonding. The main advantage of the combined system was a higher cooking yield when the MP gel was heated. These results indicated that 0.7% TG combined with 0.8% CA system can form a viscoelastic MP gel, regardless of salt levels.

농축 탈지유 한외여과액으로부터 우유미네럴의 회수 (Recovery of Milk Mineral from Concentrated Skim Milk Ultrafiltration Permeate)

  • 임광세;오세종;박동준;임지영
    • Journal of Dairy Science and Biotechnology
    • /
    • 제33권2호
    • /
    • pp.153-157
    • /
    • 2015
  • Milk mineral, which is also called milk calcium, was recovered from concentrated skim milk ultrafiltration permeate (CUFP). Lactose, the major constituent of CUFP, was crystallized by the addition of ethanol; lactose precipitation was observed to increase as the ratio of CUFP to ethanol increased. The calcium content of CUFP remained constant at a CUFP to ethanol ratio of 1:2, while it significantly decreased at a CUFP to ethanol ratio of 1:4. When ethanol (95%, v/v) was reused to precipitate lactose out of CUFP, 85% of the initial lactose precipitated out, while 82% of calcium remained soluble in the CUFP after storage for 24 h.

  • PDF

Interactive Effects of Nitrogen and Potassium Fertilization on Oxalate Content in Napiergrass (Pennisetum purpureum)

  • Rahman, M.M.;Ishii, Y.;Niimi, M.;Kawamura, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권6호
    • /
    • pp.719-723
    • /
    • 2010
  • Ingestion of forage containing a large quantity of soluble oxalate can result in calcium deficiency and even death of livestock. Fertilization is one of the most practical and effective ways to improve yield and nutritional quality of forage. An experiment was conducted to determine the effects of nitrogen (N) fertilization (150, 300 and 600 kg/ha) across varying levels (150, 300 and 600 kg/ha) of potassium (K) on oxalate accumulation in napiergrass (Pennisetum purpureum). Application of N at 300 kg/ha produced higher dry matter yield than at 150 or 600 kg/ha, while K fertilization had no effect on yield. In general, N fertilization did not affect the soluble and total oxalate contents, but slightly affected the insoluble oxalate content. Soluble oxalate content showed an increasing trend and insoluble oxalate content showed a decreasing trend with increasing K level, but total oxalate content remained relatively constant. There were significant interactions between N and K fertilization for the content of soluble and insoluble oxalate fractions. The greatest increase in soluble oxalate content with N level at 300 kg/ha was found at the high level (600 kg/ha) of K application. The greatest increase in insoluble oxalate content with N level at 600 kg/ha was found at the low level (150 kg/ha) of K application. These results indicated the possibility of controlling the content of soluble and insoluble oxalate fractions in forage by fertilization.