• Title/Summary/Keyword: solid-state laser

Search Result 152, Processing Time 0.028 seconds

Investigation of the Properties of Laser-Welded Amorphous Metal in a Deep Frozen Environment (극저온 환경하에서 레이저 용접된 비결정질 재료의 특성에 관한 연구)

  • 이건상
    • Journal of Welding and Joining
    • /
    • v.15 no.3
    • /
    • pp.99-108
    • /
    • 1997
  • For the conventional welding method, the high heat transfer makes the crystallization of the work material unavoidable. Whereas the laser is able to weld the amorphous metal without a crystallized zone, because heat transfer is limited withn a very small restricted volume. In this paper, the possibilities and the limits of the laser welding in a deep frozen environment by liquid nitrogen were studied to utilize the advantageous properties of amorphous metal foils. The author investigated, after laser welding in a deep frozen environment with a solid state laser (Nd:YAG-laser), the achievable strengths and the influences of the laser beam parameters on the strengths.

  • PDF

Blue Laser Generated by Sum Frequency (합주파에 의한 청색레이저 발생)

  • Lee Young-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.224-227
    • /
    • 2006
  • We have chained 459nm blue laser radiation generated by intracavity sum frequency generation( SFG ) due to the mixing of the 1064 nm laser output of a Nd:YVO4 pumped by diode and the 809nm radiation from higg-power semiconductor laser(500mW). The maximum blue output power of 0.95 mW was obtained using 400 mW input power of semiconductor laser at the type II phase matching condition (${\psi}=90^{\circ}\;{\theta}=90^{\circ}$). The threshold input power of blue laser generation was 120 mW.

Development of FK506-hyperproducing strain and optimization of culture conditions in solid-state fermentation for the hyper-production of FK506

  • Mo, SangJoon;Yang, Hyeong Seok
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.4
    • /
    • pp.289-298
    • /
    • 2016
  • FK506 hyper-yielding mutant, called the TCM8594 strain, was made from Streptomyces tsukubaensis NRRL 18488 by mutagenesis using N-methyl-N'-nitro-N-nitrosoguanidine, ultraviolet irradiation, and FK506 sequential resistance selection. FK506 production by the TCM8594 strain improved 45.1-fold ($505.4{\mu}g/mL$) compared to that of S. tsukubaensis NRRL 18488 ($11.2{\mu}g/mL$). Among the five substrates, wheat bran was selected as the best solid substrate to produce optimum quantities of FK506 ($382.7{\mu}g/g$ substrate) under solid-state fermentation, and the process parameters affecting FK506 production were optimized. Maximum FK506 yield ($897.4{\mu}g/g$ substrate) was achieved by optimizing process parameters, such as wheat bran with 5 % (w/w) dextrin and yeast extract as additional nutrients, 70 % (v/w) initial solid substrate moisture content, initial medium pH of 7.2, $30^{\circ}C$ incubation temperature, inoculum level that was 10 % (v/w) of the cell mass equivalent, and a 10 day incubation. The results showed an overall 234 % increase in FK506 production after optimizing the process parameters.

Laser Microfabrications for Next-Generation Flat Panel Display (레이저를 이용한 차세대 평판 디스플레이 공정)

  • Kim, Kwang-Ryul
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.352-357
    • /
    • 2007
  • Since a pattern defects "repair" system using a diode pumped solid state laser for Flat Panel Display (FPD) was suggested, a lot of laser systems have been explored and developed for mass-production microfabrication process. A maskless lithography system using 405 nm violet laser and Digital Micromirror Device (DMD) has been developed for PDP and Liquid Crystal Display (LCD) Thin Film Transistor (TFT) photolithography process. In addition, a "Laser Direct Patterning" system for Indium Tin Oxide (ITO) for Plasma Display Panel(PDP) has been evaluated one of the best successful examples for laser application system which is applied for mass-production lines. The "heat" and "solvent" free laser microfabrications process will be widely used because the next-generation flat panel displays, Flexible Display and Organic Light Emitting Diode (OLED) should use plastic substrates and organic materials which are very difficult to process using traditional fabrication methods.

Laser Rapid Prototyping by Melting Brass Powder (황동 분말의 용융에 의한 레이저 급속 조형법)

  • 최우천;최우영;송대준;이건상
    • Laser Solutions
    • /
    • v.3 no.1
    • /
    • pp.21-28
    • /
    • 2000
  • Selective Laser Sintering (SLS) can produce three-dimensional objects directly from a CAD solid model without part-specific tooling. In this study, a simple rapid prototyping through selective laser sintering on brass powder is investigated using a Nd-YAG laser. Experiments are conducted to produce single lines on a powder-packed bed for various process parameters. Also, temperature distribution in the powder bed and the thickness of a melted line are predicted by finite element analysis. In the numerical analysis, the thermal conductivity of the brass powder which is obtained as a function of state and temperature is used.

  • PDF

A Study on Fabrication of Optical Waveguide using Laser Direct Writing Method (레이저 직접묘화기법에 의한 광도파로 제작에 관한 연구)

  • 신보성;김정민;김재구;조성학;장원석;양성빈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.391-394
    • /
    • 2003
  • Laser direct writing process is developed 3rd harmonic Diode Pumped Solid State Laser with the near visible wavelength of 355 m sensitive polymer is irradiated by UV laser and developed using polymer solvent to obtain quasi-3D. It is important to reduce line width for image mode waveguides, so some investigations will be carried out in various conditions of process parameters such as laser power, writing speed, laser focus and optical properties of polymer. This process could be to fabricate a single mode waveguide without expensive mask projection method. Experimentally, the patterns of trapezoidal shape were manufactured into dimension of 8.4 mm width and 7.5 mm height. Propagation loss of straight waveguide measured 3 dB/cm at 1,550 nm.

  • PDF

On-off intermittency in an intracavity frequency doubled Nd:YAG laser pumped by a laser diode (반도체 레이저로 펌핑하는 Nd:YAG 레이저의 내부 발생형 제2차 고조파의 On-Off간헐성)

  • 김규욱;추한태;김동익;박영재;김칠민
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.1
    • /
    • pp.73-78
    • /
    • 2002
  • We have investigated the lasing characteristics of intracavity second harmonics of a Nd:YAG laser pumped by a laser diode. Through the analysis of the scalings of laminar phases, we verify that the second harmonics are generated through on-off intermittency. The intermittent behavior can be reproduced by a numerical simulation with rate equations.

Fabrication of Graded-Boundary Ni/Steel Material by Laser Beam (레이저빔에 의한 조성구배계면 Ni/Steel 재료의 제조)

  • 안재모;김도훈
    • Laser Solutions
    • /
    • v.2 no.1
    • /
    • pp.22-29
    • /
    • 1999
  • This work was carried out as a fundamental experiment to fabricate a Graded-Boundary Ni/Steel material using a laser beam. A Ni sheet was placed on a steel substrate, and then a series of high power $CO_2$ laser beams were irradiated on the surface in order to produce a homogeneous alloyed layer. The processing parameters were : 4 ㎾ laser power, 2m/min traverse speeds, -2mm defocuing, 17 l/min sheiding gas flow rates. The sequential repetition of the laser surface alloying treatment up to 4 times, resulted in about 5mm thick of fair compositional gradient systems. In order to determine the microstructure, phase and compositional profiles in this material, optical microscopy, XRD and EDS were used. The compositions varied from 66% to 0% for Ni and 34% to 100% for Fe in this material The microstructures were typical morphologies of rapid solidification and solid-state cooling. Since compressive stress was formed in the heat affected region due to martensitic transformation, while relative tensile stress was developed in the alloyed region, cracks were formed between the alloyed region and the substrate region.

  • PDF

A Design and Implement of the Medical Nd:YAG Laser Firmware under in ZCC method

  • Kim, Whi-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.40.3-40
    • /
    • 2001
  • The pulsed Nd:YAG laser is the most commonly used type of solid-state laser in many fields. In material processing and medical treatment, the power density control of a laser beam Considered to be significant, which depends on the flashlamp current pulse width and pulse repetition rate. For general laser power supply to control the laser power density, the secondary of the power transformer is connected to the rectifier and filter capacitor. The output of a rectifier is applied to a switching element in the secondary of the transformer. So power supply is complicated and the loss of switching is considerably. In addition, according to increasing pulse repetition rate, charged energy of energy-storage capacitor bank is not transferred sufficiently to flashlamp, and laser output efficiency decreases. In this study, we have ...

  • PDF

Nondestructive Measurement on Electrical Characteristics of Amorphous Silicon by Using the Laser Beam (레이저 빔을 이용한 비정질실리콘 전기적 특성의 비파괴 측정)

  • 박남천
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.36-39
    • /
    • 2000
  • A small electrical potential difference which appears on any solid body when subjected to illumination by a modulated light beam generated by laser is called photocharge voltage(PCV)[1,2]. This voltage is proportional to the induced change in the surface electrical charge and is capacitatively measured on various materials such as conductors, semiconductors, ceramics, dielectrics and biological objects. The amplitude of the detected signal depends on the type of material under investigation, and on the surface properties of the sample. In photocharge voltage spectroscopy measurements[3], the sample is illuminated by both a steady state monochromatic bias light and the pulsed laser. The monochromatic light is used to created a variation in the steady state population of trap levels in the surface and space charge region of semiconductor samples which does result in a change in the measured voltage. Using this technique the spatial variation of PCV can be utilized to evalulate the surface conditions of the sample and the variation of the PCV due to the monochromatic bias light are utilized to charactrize the surface states. A qualitative analysis of the proposed measuremen is present along with experimental results performed on amorphous silicon samples. The deposition temperature was varied in order to obtain samples with different structural, optical and electronic properties and measurements are related to the defect density in amorphous thin film.

  • PDF