• 제목/요약/키워드: solid-state culture

검색결과 80건 처리시간 0.023초

Chitinase을 생산하는 곤충병원미생물 Metarhizium anisopliae HY-2(KCTC 0156BP)의 토양해충 생물검정

  • 서은영;손광희;신동하;김기덕;박두상;박호용
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2002년도 생물공학의 동향 (X)
    • /
    • pp.469-472
    • /
    • 2002
  • 균체 생산성 실험과 chitinase 생산성 실험을 비교해 볼 때, chitinase만을 생산하는 조건 에서는 배지성분에 chitin을 첨가해 주는 것이 좋으나, 해충 방제용으로 살균력을 증진시키기 위하여 균체량과 chitinase의 생성량 및 산업적, 경제적 사용이 용이한 배지를 고려할 때에는 쌀겨와 밀기울이 첨가된 배지가 좋은 배지임을 알 수 있었다. 또한 이 배지를 이용하였을 경우 균체는 1X$10^8$ cfu/g, chitinase는 370mU/g로 생산되었으며 생물검정결과 53-64%의 탁월한 살충효과를 확인 할 수 있었다.

  • PDF

Solid State Fermentation Reactor를 이용한 유기성 폐기물의 발효 (Composting of Organic Wastes by solid State Fermentation Reactor)

  • 홍운표;이신영
    • 한국미생물·생명공학회지
    • /
    • 제27권4호
    • /
    • pp.311-319
    • /
    • 1999
  • Leaves of Aloe vera Linne and bloods of domestic animal were composted in a soild state fermentation reactor (SSFR) by using microbial additive including a bulking and moisture controlling agent. From solid-culture of microbial additive, 10 species of bacteria and 10 species of fungi were isolated and, their enzyme activities including amylase, carboxy methyl cellulase CMCase, lipase and protease were detected. Optimum fermentation conditions of Aloe leaves and domestic animal bloods in SSFR were obtained from the studies of response surface analysis employing microbial additive content, initial moisture content, and fermentation temperature as the independent variables. The optimum conditions for SSFR using Aloe leaves were obtained at 9.45$\pm$73%(w/w) of microbial additives, 62.73$\pm$4.54%(w/w) of initial moisture content and 55.32$\pm$3.14$^{\circ}C$ of fermentation temperature while those for SSFR using domestic animal bloods were obtained at 10.25$\pm$2.04%, 58.68$\pm$4.97% and 57.85$\pm$5.$65^{\circ}C$, respectively. Composting process in SSFR was initially proceeded through fermentation and solid materials were decomposed within 24 hours by maintaining higher moisture level, and maturing and drying steps are followed later. After the fermentation step, the concentrations of solid phase inorganic components were increased while that of organic components were decreased. Also, concentrations of total organic carbon(TOC), peptides, amino acids, polysaccharides, and low fatty acids in water extracts were increased. As fermentation in composting process depends on initial C/N ratios in water extracts of two samples were increased because of increased water-soluble TOC. From these results, it was revealed that solid state fermentation reactor using microbial additives can be used in composting process of organic wastes with broad C/N ratio.

  • PDF

Development of FK506-hyperproducing strain and optimization of culture conditions in solid-state fermentation for the hyper-production of FK506

  • Mo, SangJoon;Yang, Hyeong Seok
    • Journal of Applied Biological Chemistry
    • /
    • 제59권4호
    • /
    • pp.289-298
    • /
    • 2016
  • FK506 hyper-yielding mutant, called the TCM8594 strain, was made from Streptomyces tsukubaensis NRRL 18488 by mutagenesis using N-methyl-N'-nitro-N-nitrosoguanidine, ultraviolet irradiation, and FK506 sequential resistance selection. FK506 production by the TCM8594 strain improved 45.1-fold ($505.4{\mu}g/mL$) compared to that of S. tsukubaensis NRRL 18488 ($11.2{\mu}g/mL$). Among the five substrates, wheat bran was selected as the best solid substrate to produce optimum quantities of FK506 ($382.7{\mu}g/g$ substrate) under solid-state fermentation, and the process parameters affecting FK506 production were optimized. Maximum FK506 yield ($897.4{\mu}g/g$ substrate) was achieved by optimizing process parameters, such as wheat bran with 5 % (w/w) dextrin and yeast extract as additional nutrients, 70 % (v/w) initial solid substrate moisture content, initial medium pH of 7.2, $30^{\circ}C$ incubation temperature, inoculum level that was 10 % (v/w) of the cell mass equivalent, and a 10 day incubation. The results showed an overall 234 % increase in FK506 production after optimizing the process parameters.

홍국균(Monascus ruber) 균사체-커피생두 발효물로부터 조제된 원두커피의 생리활성 (Physiological Activity of Roasted Coffee prepared from Fermented Green Coffee Bean with Monascus ruber Mycelium)

  • 김훈;서형주;신지영;황종현;유광원
    • 한국식품영양학회지
    • /
    • 제29권1호
    • /
    • pp.1-11
    • /
    • 2016
  • To enhance the physiological activities of roasted coffee (RC), 30 kinds of green coffee beans (GCB) with different cultivating areas and varieties were fermented with Monascus ruber mycelium (MR) by solid-state culture. After the dried MR-fermented GCB was subjected medium roasting, each RC was extracted with hot-water. Among the hot-water extracts, the highest yield was the hot-water extract of RC from MR-fermented Indonesia Mandheling GCB (15.5%). However, the hot-water extract of RC from MR-fermented Ethiopia Sidamo GCB showed significantly higher polyphenolic contents (3.08 mg GAE/100 mg) and ABTS free radical scavenging activity (25.41 mg AEAC/100 mg). Meanwhile, the hot-water extract of RC from MR-fermented Vietnam Robusta GCB showed not only the effective inhibition of $TNF-{\alpha}$ level (73.7% inhibition of LPS-stimulated control) from LPS-stimulated RAW 264.7 cells but also significant inhibition of lipogenesis (63.5% inhibition of lipid differentiation control) in 3T3-L1 pre-adipose cells. In conclusion, these results suggest that roasted coffees from Ethiopia Sidamo and Vietnam Robusta green coffee beans fermented with Monascus ruber mycelium using solid-state culture could have industrial applications as functional coffee beverages.

Improvement of a Fungal Strain by Repeated and Sequential Mutagenesis and Optimization of Solid-State Fermentation for the Hyper-Production of Raw-Starch-Digesting Enzyme

  • Vu, Van Hanh;Pham, Tuan Anh;Kim, Keun
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권4호
    • /
    • pp.718-726
    • /
    • 2010
  • A selected fungal strain, for production of the raw-starchdigesting enzyme by solid-state fermentation, was improved by two repeated sequential exposures to ${\gamma}$-irradiation of $Co^{60}$, ultraviolet, and four repeated treatments with Nmethyl-N'-nitrosoguanidine. The mutant strain Aspergillus sp. XN15 was chosen after a rigorous screening process, with its production of the raw-starch-digesting enzyme being twice that of usual wild varieties cultured under preoptimized conditions and in an unsupplemented medium. After 17 successive subculturings, the enzyme production of the mutant was stable. Optimal conditions for the production of the enzyme by solid-state fermentation, using wheat bran as the substrate, were accomplished for the mutant Aspergillus sp. XN15. With the optimal fermentation conditions, and a solid medium supplemented with nitrogen sources of 1% urea and 1% $NH_4NO_3$, 2.5 mM $CoSO_4$, 0.05% (v/w) Tween 80, and 1% glucose, the mutant Aspergillus sp. XN15 produced the raw-starch-digesting enzyme in quantities 19.4 times greater than a typical wild variety. Finally, XN15, through simultaneous saccharification and fermentation of a raw rice corn starch slurry, produced a high level of ethanol with $Y_{p/s}$ of 0.47 g/g.

Fungal Biotransformation of Monoterpenes Found in Agro-Industrial Residues from Orange and Pulp Industries into Aroma Compounds: Screening Using Solid Phase Microextraction

  • Junior, Mario Roberto Marostica;Mota, Natasha Onoyama;Baudet, Nathalie;Pastore, Glaucia Maria
    • Food Science and Biotechnology
    • /
    • 제16권1호
    • /
    • pp.37-42
    • /
    • 2007
  • The biotransformation of monoterpenic agro-industrial wastes (turpentine oil and essential orange oil) was studied. More than 40 fungal strains were isolated from Brazilian tropical fruits and eucalyptus trees and screened for biotransformation of the waste substrates. Solid phase microextraction was used to monitor the presence of volatile compounds in the headspaces of sporulated surface cultures. The selected strains were submitted to submerged liquid culture. The biotransformation of R-(+)-limonene and ${\alpha},\;{\beta}-$ pinenes from the oils resulted in ${\alpha}-terpineol$ and perillyl alcohol, and verbenol and verbenone, respectively, as the main products. The selected strains were also placed in contact with ${\alpha}-$ and ${\beta}-$ pinenes standards. It was confirmed that verbenol, verbenone, and ${\alpha}-terpineol$ were biotransformation products from the terpenes. A concentration of 90 mg/L of verbenone was achieved by Penicillium sp. 2360 after 3 days of biotransformation.

Application and Analysis of Rhizopus oryzae Mycelia Extending Characteristic in Solid-state Fermentation for Producing Glucoamylase

  • Tang, Xianghua;Luo, Tianbao;Li, Xue;Yang, Huanhuan;Yang, Yunjuan;Li, Junjun;Xu, Bo;Huang, Zunxi
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권11호
    • /
    • pp.1865-1875
    • /
    • 2018
  • Enhanced application of solid-state fermentation (SSF) in industrial production and the influence of SSF of Rhizopus K1 on glucoamylase productivity were analyzed using the flat band method. A growth model was implemented through SSF of Rhizopus K1 in this experiment, and spectrophotometric method was used to determine glucoamylase activity. Results showed that in bran and potato culture medium with 70% moisture in a loose state, ${\mu}$ of mycelium reached to $0.15h^{-1}$ after 45 h of culture in a thermostatic water bath incubator at $30^{\circ}C$. Under a low-magnification microscope, mycelial cells appeared uniform, bulky with numerous branches, and were not easily ruptured. The generated glucoamylase activity reached to 55 U/g (dry basis). This study has good utilization value for glucoamylase production by Rhizopus in SSF.

Xylanase Production by Mixed Culture Using Crude Hemicellulose from Rice Straw Black Liquor and Peat Moss as an Inert Support

  • Shata, Hoda Mohamed Abdel Halim;El-Deen, Azza Mohmed Noor;Nawwar, Galal Abdel Moen;Farid, Mohmed Abdel Fattah
    • Journal of Applied Biological Chemistry
    • /
    • 제57권4호
    • /
    • pp.313-320
    • /
    • 2014
  • Black liquor (BL) is a by-product of rice straw pulping process. It is a low costs raw material for production value-adding proteins and enzymes, which has been paid more and more attention to reduce its environmental pollution. Mixed cultures of micelial fungi, Trichoderma reesei Northern Regional Research Laboratory (NRRL)11236, Trichoderma reesei NRRL 6165 and Aspergillus niger strains NRC 5A, NRC 7A, and NRC 9A were evaluated for their ability to produce xylanase using crude hemicellulose (CHC) prepared from BL and peat moss as an inert support under solid state fermentation (SSF). The most potent strains, A. niger NRC 9A (818.26 U/g CHC) and T. reesei NRRL 6165 ($100.9{\pm}57.14$ U/g CHC), were used in a mixed culture to enhance xylanase production by co-culturing under SSF. In the mixed culture, xylanase production ($1070.52{\pm}12.57$ U/g CHC) was nearly1.3 and 10.6-fold increases over the activities attained in their monocultures, A. niger NRC 9A and T. reesei NRRL 6165, respectively. Optimization of the culture parameters of the mixed culture SSF process, concentration of ammonium sulfate and corn steep liquor, CHC/peat moss ratio, inoculum size and ratios of the two strains, initial pH value, initial moisture content and incubation time, exhibited a significant increase ($2414.98{\pm}84.02$ U/g CHC) in xylanase production than before optimization.

Effects of Feeding Solid-state Fermented Rapeseed Meal on Performance, Nutrient Digestibility, Intestinal Ecology and Intestinal Morphology of Broiler Chickens

  • Chiang, G.;Lu, W.Q.;Piao, X.S.;Hu, J.K.;Gong, L.M.;Thacker, P.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권2호
    • /
    • pp.263-271
    • /
    • 2010
  • This trial was conducted to determine the effects of feeding a diet containing solid-state fermented rapeseed meal on performance, nutrient digestibility, intestinal ecology and intestinal morphology of broiler chickens. A mixed liquid culture, containing approximately 5 log cfu/ml Lactobacillus fermentum, Enterococcus faecium, Saccharomyces cerevisae and Bacillus subtilis was prepared in a 1:1:1:1 ratio. A basal substrate (BS) containing 75% rapeseed, 24% wheat bran and 1% brown sugar was mixed with the liquid culture in a ratio of 10:3. Over the 30-day fermentation, isothiocyanates were reduced from 119.6 to 14.7 mmol/kg. A total of 168, day-old male Arbor Acres broiler chicks were assigned to one of three dietary treatments including a corn-soybean meal based control diet as well as two experimental diets in which the control diet was supplemented with 10% of the BS containing unfermented rapeseed meal or 10% of the BS containing rapeseed meal subjected to solid state fermentation. There were 8 pens per treatment and 7 birds per pen. From days 19-21 and days 40-42, uncontaminated excreta were collected from each pen for digestibility determinations. In addition, digesta from the colon and ceca were collected to determine the number of lactobacilli, enterobacteria and total aerobes. The middle sections of the duodenum, jejunum, and ileum were collected for intestinal morphology. Over the entire experimental period (d 1-42), the weight gain and feed conversion of birds fed fermented rapeseed meal were superior (p<0.05) to that of birds fed nonfermented rapeseed meal and did not differ from the soybean control. On day 42, birds fed fermented rapeseed meal had higher (p<0.05) total tract apparent digestibility coefficients for dry matter, energy, and calcium than birds fed non-fermented rapeseed meal. Colon and ceca digesta from broilers fed the fermented feed had higher (p<0.05) lactobacilli counts than birds fed the control and non-fermented rapeseed meal diets on day 21 and 42. Fermentation also improved (p<0.05) villus height and the villus height:crypt depth ratio in the ileum and jejunum on day 21 and 42. The results indicate that solid-state fermentation of rapeseed meal enhanced performance and improved the intestinal morphology of broilers and may allow greater quantities of rapeseed meal to be fed to broilers potentially reducing the cost of broiler production.

A Specific Short Dextrin-Hydrolyzing Extracellular Glucosidase from the Thermophilic Fungus Themoascus aurantiacus 179-5

  • Carvalho Ana Flavia Azevedo;Goncalves Aline Zorzetto;Silva Roberto da;Gomes Eleni
    • Journal of Microbiology
    • /
    • 제44권3호
    • /
    • pp.276-283
    • /
    • 2006
  • The thermophilic fungus Thermoascus aurantiacus 179-5 produced large quantities of a glucosidase which preferentially hydrolyzed maltose over starch. Enzyme production was high in submerged fermentation, with a maximal activity of 30 U/ml after 336 h of fermentation. In solid-state fermentation, the activity of the enzyme was 22 U/ml at 144 h in medium containing wheat bran and 5.8 U/ml at 48 h when cassava pulp was used as the culture medium. The enzyme was specific for maltose, very slowly hydrolyzed starch, dextrins (2-7G) and the synthetic substrate (${\alpha}$-PNPG), and did not hydrolyze sucrose. These properties suggest that the enzyme is a type II ${\alpha}$-glucosidase. The optimum temperature of the enzyme was $70^{\circ}C$. In addition, the enzyme was highly thermostable (100% stability for 10 h at $60^{\circ}C$ and a half-life of 15 min at $80^{\circ}C$), and stable within a wide pH range.