• Title/Summary/Keyword: solid yield

Search Result 708, Processing Time 0.025 seconds

Radiolysis of Oxygenated and Deoxygenated Glycylglycylglycine in Aqueous Solution and in the Solid State (酸素의 存在下와 無酸素下에서의 水溶液 및 固體 Glycylglycylglycine의 放射線分解)

  • Kang, Man-Sik
    • The Korean Journal of Zoology
    • /
    • v.13 no.3
    • /
    • pp.75-84
    • /
    • 1970
  • Gamma-radiolyses of oxygenated and deoxygenated glycylglycylclycine in aqueous solution and in the solid state are observed, with special regards to peptied bond rupture for elucidation of radiolytic mechanism of proteins, by means of chromatorgraphic separation of degradation products, spectrophotometric quantitation of carbonyl compounds, micro-titration of amide formation, infrared spectrophptometry, and ultraviolet spectrophotometry for evaluation of radiation damage. Essential difference of peptide bond rupture is observed in solution and in the solid state, being high in the former and negligible in the latter. On the other hand, the presence of and obsence of oxygen in solution during irradiation are not so significant with respect to peptide bond rupture, except the recombination of free-radicals produced in deoxygenated solution. Peptide bond rupture in solution is attributable to the mechanisms proposed by Garrison et al.; dehydrogenation followed by hydrolysis to yield acid amide and carbonyl function as found on the basis of radiolytic products. Peptide bond attack at $\\alpha$-carbon locus might be suggestive for irradiated solid but not significant in view of low degree of peptide bond rupture.

  • PDF

Production of Total Reducing Sugar from Enteromorpha intestinalis Using Citrate Buffer Pretreatment and Subsequent Enzymatic Hydrolysis (창자파래로부터 citrate buffer를 이용한 전처리와 효소가수분해를 통한 환원당 생산)

  • Kim, Dong-Hyun;Kim, A-Ram;Park, Don-Hee;Jeong, Gwi-Taek
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.70-74
    • /
    • 2016
  • In this study, the effects of citrate buffer pretreatment conditions (solid-to-liquid ratio, reaction temperature, pH and concentration of buffer) on enzymatic hydrolysis of E. intestinalis for total reducing sugar (TRS) production were investigated. As a results of the citrate buffer pretreatment, a 5.40% hydrolysis yield was obtained under conditions including 1:10 solid-to-liquid ratio, 0.25 M citrate buffer (pH 3.5) at $140^{\circ}C$ for 60 min. The maximum hydrolysis yield of 18.68% was obtained to enzymatic hydrolysis after pretreatment. This result is 1.81 times higher than that of control.

Mechanical Characteristics and Macro-and Micro-structures on Friction Stir Welded Joints with 5083O Al Alloys (Al 5083O합금의 마찰교반용접부의 조직과 특성평가)

  • Jang, Seok-Ki;Park, Jong-Seek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.104-111
    • /
    • 2009
  • This paper shows the behaviors of macro- and micro-structures and mechanical properties for specimen's welding region welded by FSW. according to welding conditions with 5mm thickness aluminum 5083O alloy plate. It apparently results in defect-free weld zone in case traverse speed was changed to 32 mm/min under conditions of anti-clockwise direction and tool rotation speed such as 800 and 1250 rpm with tool's pin diameter of 5 ${\Phi}mm$ and shoulder diameter of 20 ${\Phi}mm$, pin length of 4.5 mm and tilting angle of $2^{\circ}$. The ultimate stress of ${\sigma}_T=331$ MPa and the yield point of 147 MPa are obtained at the condition of the travel speed of 32 mm/min with the tool rotation speed of 1250 rpm. There is neither voids nor cracks on bended surface of $180^{\circ}$ after bending test. The improvement of toughness after impact test was found. The lower rotating and traverse speed became, the higher were yield point, maximum stress and elongation(%) with the stresses and the elongation(%) versus the traverse speed diagram. Vickers hardness for cross section of welding zone were also presented. The typical macro-structures such as dynamically recrystallized zone, thermo-mechanically affected zone and heat affected zone and the micro-structures of the transverse cross-section were also showed. However, the author found out that the region of 6mm far away from shoulder circumference was affected by friction heat comprehensively, that is, hardness softened and that part of micro-structures were re-solid-solution or recrystallized, the author also knew that there is no mechanically deformation on heat affected zone but there are the flow of plastic deformation of $45^{\circ}$ direction on thermo-mechanically affected zone and the segregation of Al-Mg on nugget. The solid solution wt(%) of parent material as compared against of friction stir welded zone was comprehensively changed.

Improvement of the Mechanical Properties of Al-7Si-0.35Mg Cast Alloys by the Optimised Combination of Alloying Elements and Heat Treatment (합금원소 첨가 및 열처리 공정 제어를 통한 Al-7Si-0.35Mg 주조재 합금의 기계적 특성 향상)

  • Cho, Young-Hee;Lee, Jung-Moo;Jin, Jin-Woo;Jung, Jae-Gil
    • Journal of Korea Foundry Society
    • /
    • v.36 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Improvement of the mechanical properties of a commercial aluminium casting alloy, A356, was achieved through an optimised combination of alloying elements, modification, and heat treatment. 0.7 wt.% Cu and an additional 0.2 wt.% Mg were added to an Al-7Si-0.35Mg alloy for strengthening at both room and elevated temperatures, whilst a subsequent decrease in the ductility was compensated for by the modification of eutectic Si by Sr addition at a level of up to 110 ppm. It was found that the dissolution of Cu-rich or Mg-rich phases could be maximised by solid-solutionising an alloy with 40 ppm Sr at $530^{\circ}C$, increasing the tensile and yield strengths to 350 MPa and 297 MPa, respectively, with a reasonably high strain of 5% after peak-aging at $210^{\circ}C$. Further addition of Sr up to 110 ppm is, however, more likely to interfere with the dissolution of the Cu-rich or Mg-rich phases during solid solution treatment, resulting in a slight decrease in both tensile and yield strengths at room temperature. Besides the Cu addition, such undissolved phases, on the other hand, may contribute to elevated temperature strength at $200^{\circ}C$.

The Dynamic Nonlinear Analysis of Shell Containment Building subjected to Aircraft Impact Loading (항공기 충돌에 대한 쉘 격납건물의 동적 비선형해석)

  • 이상진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.567-578
    • /
    • 2002
  • The main purpose of this study is to investigate the dynamic behaviour of containment building in nuclear power plant excited by aircraft impact loading using a lower order 8-node solid element. The yield and failure surfaces for concrete material model is formulated on the basis of Drucker-Prager yield criteria and are assumed to be varied by taking account of the visco-plastic energy dissipation. The standard 8-node solid element has prone to exhibit the element deficiencies and the so-called B bar method proposed by Hughes is therefore adopted in this study. The implicit Newmark method is adopted to ensure the numerical stability during the analysis. Finally, the effect of different levels of cracking strain and several types of aircraft loading are examined on the dynamic behaviour of containment building and the results are quantitatively summarized as a future benchmark.

Effects of top-dressing period on Yield and Storage Quality of Onion(Allium Cepa L.) (추비시기가 양파의 수량 및 저장성에 미치는 영향)

  • 김희대;이찬중;정은호;서전규
    • Food Science and Preservation
    • /
    • v.10 no.3
    • /
    • pp.267-271
    • /
    • 2003
  • This study was carried out to investigate the yield and storability of onions on top-dressing period. Top-dressing period was applied in February, March and March, April with liquid fertilizer and solid fertilizer of farmhouse practice during the onion growing season. The yields of onion in experimental station field and farmhouse field treated with conventional fertilization were 53.2 and 56.6MT, respectively. However, they were 58.2 and 60.8MT with application of liquid fertilizer in February and March, and 53.6 and 59.1MT with application of liquid fertilizer in March and April. Rotting rates until the end of August were lower with application of liquid fertilizer on February and March(15.8%, 28.9%), compared with application of solid fertilizer by farmhouse practice(23.6%, 41.0%), and were 20.7% and 31.7% by treatment of liquid fertilizer on March and April. In conclusion, treatment of liquid fertilizer on February and March decreased the rotting rate.

Processing of Powdered Jujube Juice by Spray Drying (분무건조에 의한 분말대추음료의 가공)

  • 안덕순;우강융;이동선
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.1
    • /
    • pp.81-86
    • /
    • 1997
  • Spray dried powdered juice was processed from concentrated extract of jujube(Zizyphus jujuba MILLER). Spray drying of the extract solution could not be operated to have powder product by itself over whole concentration range and required addition of some carrier or support material. The concentrated extract of 26$^{\circ}$Bx was combined with carrier material solution to have a final concentration of 30$^{\circ}$Bx, and then spray dried. Proper addition level of carrier solid for physical and flavor quality of the powder product was determined to be 1 : 1 ratio to jujube solid. Combined use of maltose and gum arabic produced the best quality product among the studied carrier materials, which were maltose, dextrin, condensed milk and gum arabic. Enzymatic treatment in extraction process could increase the yield by 13~39%, but hurt the sensory quality of powdered juice. Treatment by 0.5% pectinase(0.05 unit/ml) may be used with lesser quality change for improved yield.

  • PDF

Microencapsulation of Caramel Flavor and Properties of Ready-to-drink Milk Beverages Supplemented with Coffee Containing These Microcapsules

  • Kim, Gur-Yoo;Lee, Jaehak;Lim, Seungtae;Kang, Hyojin;Ahn, Sung-Il;Jhoo, Jin-Woo;Ra, Chang-Six
    • Food Science of Animal Resources
    • /
    • v.39 no.5
    • /
    • pp.780-791
    • /
    • 2019
  • This study aimed to extend the retention of flavor in coffee-containing milk beverage by microencapsulation. The core material was caramel flavor, and the primary and secondary coating materials were medium-chain triglyceride and maltodextrin, respectively. Polyglycerol polyricinoleate was used as the primary emulsifier, and the secondary emulsifier was polyoxyethylene sorbitan monolaurate. Response surface methodology was employed to determine optimum microencapsulation conditions, and headspace solid-phase microextraction was used to detect the caramel flavor during storage. The microencapsulation yield of the caramel flavor increased as the ratio of primary to secondary coating material increased. The optimum ratio of core to primary coating material for the water-in-oil (W/O) phase was 1:9, and that of the W/O phase to the secondary coating material was also 1:9. Microencapsulation yield was observed to be approximately 93.43%. In case of in vitro release behavior, the release rate of the capsules in the simulated gastric environment was feeble; however, the release rate in the simulated intestinal environment rapidly increased within 30 min, and nearly 70% of the core material was released within 120 min. The caramel flavor-supplemented beverage sample exhibited an exponential degradation in its flavor components. However, microcapsules containing flavor samples showed sustained flavor release compared to caramel flavor-filled samples under higher storage temperatures. In conclusion, the addition of coffee flavor microcapsules to coffee-containing milk beverages effectively extended the retention of the coffee flavor during the storage period.

Evaluation of Growth and Wood Traits in E. camaldulensis and Interspecific Eucalypt Hybrid Clones Raised at Three Diverse Sites in Southern India

  • Rathinam Kamalakannan;Suraj Poreyana Ganapathy;Shri Ram Shukla;Mohan Varghese;Chandramana Easwaran Namboothiri Jayasree
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.1
    • /
    • pp.27-39
    • /
    • 2023
  • Twenty-five Eucalyptus clones (14 E. camaldulensis - EC and 11 interspecific eucalypt hybrid clones - EH) grown in three contrasting sites were evaluated for the growth and few wood traits at 4 years of age. The stability, genotype-site interaction and suitability of these clones for pulp and solid wood industry sectors were studied. Growth of eucalypt clones was significantly higher at site 1 with higher rainfall, but wood density did not differ significantly from lower rainfall sites. Kraft pulp yield (KPY) decreased from sites 1 to 3 based on moisture availability, but not between two groups of clones. Volumetric shrinkage (VS) was significantly higher in EC clones at site 3 with lowest rainfall, but there was no specific trend at other two sites with maximum (site 1) and intermediate (site 2) rainfall. The mechanical traits modulus of rupture (MOR) and modulus of elasticity (MOE) were at par in sites 1 and 2, but significantly lower at the driest site 3. The growth rate had a significant positive correlation with KPY, MOR and MOE and a negative correlation with VS, but no significant impact on wood density in both groups of clones. Genotype×environment interaction (G×E) was evident in most traits due to the difference in response of clones to moisture availability. Since wood density was negatively correlated to KPY, it has to be kept at an optimum level for the profitability of pulp industry. There was no significant difference between EC and EH clones for most traits except VS at site 3. Stability of clones varied across sites in different traits, and hence clones may be selected for deployment at each site by screening for growth, followed by wood density, considering the relationship of growth and density with other traits required by pulp and solid wood industry sectors.

The Production of Xanthan from Brewer's Spent Grain

  • Rajiv Chetia;Bhriganka Bharadwaj;Rahul Dey;Biswa Prasun Chatterji
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.449-456
    • /
    • 2023
  • Sugar or dextrose increases the cost of production of xanthan gum by Xanthomonas campestris. Brewers' Spent Grain (BSG) was chosen as a source of fermentable sugars. BSG is a significant industrial by-product generated in large quantities from the breweries. Primarily used as animal feed due to its high fiber and protein content, BSG holds great potential as an economically and ecologically sustainable substrate for fermenting biomolecules. This study explores BSG's potential as a cost-effective carbon source for producing xanthan, utilizing Xanthomonas campestris NCIM 2961. An aqueous extract was prepared from BSG and inoculated with the bacterium under standard fermentation conditions. After fermentation, xanthan gum was purified using a standard protocol. The xanthan yield from BSG media was compared to that from MGYP media (control). The fermentation parameters, including pH, temperature, agitation and duration were optimized for maximum xanthan gum yield by varying them at different levels. Following fermentation, the xanthan gum was purified from the broth by alcoholic precipitation and then dried. The weight of the dried gum was measured. The obtained xanthan from BSG under standard conditions and commercial food-grade xanthan were characterized using FTIR. The highest xanthan yields were achieved at 32 ℃, pH 6.0, and 72 h of fermentation at 200 rpm using BSG media. The FTIR spectra of xanthan from BSG media closely resembled that of commercial food-grade xanthan. The results confirm the potential of BSG as a cost-effective alternative carbon source for xanthan production, thereby reducing production costs and solid waste.