• Title/Summary/Keyword: solid yield

Search Result 704, Processing Time 0.023 seconds

Anaerobic Bioconversion Potential of Blue Crab Processing Waste and Wastewater(I) (꽃게(Blue Crab) 가공 식품 제조 공정상 발생된 폐수 및 폐기물의 혐기성 생분해 가능성(I))

  • Lee, Hyung-Jib
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.4
    • /
    • pp.54-62
    • /
    • 1997
  • Disposal of blue crab wastes represents a significant problem to processors, who are limited with respect to acceptable disposal alternatives. Anaerobic bioconversion technology was investigated to determine an environmentally sound and economic disposal method for these wastes. In the study ultimate methane yield for total crab solid waste was $0.180m^3/kg$ VS added and biodegradation rate constant was $0.15day^{-1}$. Methane yield of the bench-scale reactor operated on similar feedstock was $0.189m^3/kg$ VS added and biodegradation rate constant was $0.06day^{-1}$. These results indicate that anaerobic bioconversion of blue crab wastes was technically feasible. Use of anaerobic bioconversion technology can be an attractive option for blue crab processing waste management. The by-product methane gas could be used for maintainign a number of processing operations (i.e., heat for cooking, or keeping temperature of digester constant).

  • PDF

Syntheses and Characterization of Polysilanes with Bulky Substituents

  • 장선화;박찬권;송영상;이규환
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.443-447
    • /
    • 1996
  • Several polysilanes with sterically bulky substituents such as poly(2-phenylpropyl)(n-hexyl)silane were prepared by Wurtz-type coupling. The polysilane products were mixtures of low-molecular-weight polymers (&bar{M};w~103) as major and high-molecular-weight polymers (&bar{M};w~106) as minor. Overall yields for polysilanes were in the range of 81-99%. λmax of liquid low MW polymers appeared at around 280 nm. Formations of solid high MW polymers were decreased by a longer reaction time and increased steric bulkiness of substituents. High MW polymers with λmax at 327 nm except crosslinked polymers were soluble in common organic solvents and found to be light sensitive. Crosslinked high MW polymer gave 21% TGA ceramic yield, compared with linear high polymer giving zero ceramic yield.

The $CO_{2}$ Hydrogenation toward the Mixture of Methanol and Dimethyl Ether: Investigation of Hybrid Catalysts

  • 준기원;K.S. Rama Rao;정미희;이규완
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.466-470
    • /
    • 1998
  • Catalytic hydrogenation of carbon dioxide for the simultaneous synthesis of methanol and dimethyl ether (together called oxygenates) over a combination of methanol synthesis and methanol dehydration catalysts has been studied. Various methanol synthesis and methanol dehydration catalysts were examined for this reaction. The addition of promotors like $Ga_2O_3\; and\; Cr_2O_3$ to Cu/ZnO catalyst gave much more enhanced yield on the formation of oxygenates. From the results, the promotional effect of $Cr_2O_3$ has been explained in terms of increase in the intrinsic activity of Cu while that of $Ga_2O_3$ being increase in the dispersion of Cu. Among the methanol dehydration catalysts examined, the solid acids bearing high population of intermediate-strength acid sites were found to be very effective for the production of oxygenates. HY zeolite which contains strong acid sites produce small amount of hydrocarbons as by-products. However, CuNaY zeolite in which the presence of strong acid sites are minimum gives very high oxygenates yield without the formation of hydrocarbons.

Rheological properties of arabinogalactan solutions related to the carbohydrate composition of different legumes

  • Kyeongyee Kim;Choon Young Kim
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.785-796
    • /
    • 2023
  • The aim of this study was to elucidate chemical structures and rheological properties of arabinogalactans (AGs) isolated from three legumes including black gram (BG), great northern bean (GNB), and California small white bean (CSWB). The ratio of galactose to arabinose (G/A) in three legumes increased in the order of BG > GNB > CSWB. The rheological measurements of 1-5% (w/v) AG solutions revealed Newtonian and non-Newtonian flow behaviors. BG exhibited yield stress, indicating plastic behavior. Small-amplitude oscillatory tests indicated viscoelastic properties of BG, GNB, and CSWB ranging from solid-like, paste-like, and liquid-like behaviors, respectively. Small-strain oscillatory tests were conducted to assess the structure recovery of the AGs after pre-shearing. G" values of BG and GNB increased, but those of CSWB remained constant after shearing. These results suggest that the chemical structures of the AGs, particularly their G/A ratios, influence their rheological properties.

Effect of Ice Recrystallization on Freeze Concentration of Milk Solutes in a Lab-Scale Unit

  • Park, Sung-Hee;Kim, Jee-Yeon;Hong, Geun-Pyo;Kwak, Hae-Soo;Min, Sang-Gi
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.196-201
    • /
    • 2006
  • Freeze concentration of milk was carried out thorough the controlled recrystallization of ice in a multi-stage freeze concentrator. Artificial temperature control was used to induce ice recrystallization via a heat and cold shock process. In each stage of freeze concentration, the recrystallization time was fixed at 1, 2, 4, and 8 hr to compare the solute concentrate, yield, Brix, ice crystal size, and freezing point at each experimental condition. Higher concentrations of milk solids were seen with increased durations of recrystallization time, and a maximum total solids in the final product of 32.7% was obtained with a ripening time of 8 hr in a second stage process. Milk solid yield decreased according to the solute concentration and recrystallization time. The results of Brix and ice crystal size showed a positive correlation with recrystallizaiton time. These results suggest the possibility of freeze concentration being of practical use in the dairy industry.

Potential of proteolytic enzyme treatment for production of Korean red ginseng extract (홍삼 추출물의 제조에서 단백질 분해효소의 활용)

  • Kim, Dong Chung;Lee, Tae Jung;In, Man-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.385-389
    • /
    • 2019
  • In this study, proteolytic enzymatic treatment conditions for Korean red ginseng were examined to increase the extraction yield. Commercially available proteases were screened to obtain high protein and carbohydrate yield. The optimal dosage and reaction time for Alcalase, the chosen protease, were found to be 2.0% (w/w) and 1.5 h, respectively. Treatment with optimal conditions of Alcalase increased solid yield, total phenolic content and gensenosides content by 57.6, 81.8, and 33.8%, respectively, over levels in non-treated Korean red ginseng. Antioxidative activities evaluated by free radical scavenging activity, cation radical scavenging activity and reducing power were exactly similar between Alcalase-treated and non-treated extracts.

Bioprocess Strategies and Recovery Processes in Gibberellic Acid Fermentation

  • Shukla, Ruchi;Srivastava, Ashok K.;Chand, Subhash
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.5
    • /
    • pp.269-278
    • /
    • 2003
  • Gibberellic acid (GA$_3$) is a commercially important plant growth hormone, which is gaining much more attention all over the world due to its effective use in agriculture and brewing industry. Industrially it is produced by submerged fermentation technique using Ascomycetous fungus Gibberella fujikuroi. Solid state and immobilized cell fermentation techniques had also been developed as an alternative to obtain higher yield of GA$_3$. This review summarizes the problems of GA$_3$ fermentation such as production of co-secondary metabolites along with GA$_3$, substrate inhibition and degradation of GA$_3$ to biologically inert compound gibberellenic acid, which limits the yield of GA$_3$ in the fermentation medium. These problems can be overcome by various bioprocessing strategies e.g. two - stage and fed batch cultivation processes. Further research on bioreactor operation strategies such as continuous and / or extractive fermentation with or without cell recycle / retention system need to be investigated for improvement in yield and productivity. Down stream processing for GA$_3$ isolation is also a challenge and procedures available for the same have been critically evaluated.

A Study for The Effect of Variation of Resin Content on The Rheological Characteristics of Ink Vehicle (수지의 함량 변화에 따른 잉크 비히클의 유변학적 특성에 관한 연구)

  • Bang, Jong-Gwan;Kim, Sung-Bin;Kim, Tae-Hwan;Lee, Kyu-Il
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.23 no.2
    • /
    • pp.117-128
    • /
    • 2005
  • Printing inks are basically dispersions of solid pigment particles in a vehicle. Pigment flocculation and/or colloidal aggregates created by thixotrope additives form a three- dimensional network in the inks. This structure complicates the flow behaviour of inks. However, if the internal structure is formed under control, the printing process will benefit from it because the ink must satify rheological requirements over a very wide range of shear conditions. The presence of internal structure results in the following prominent non-Newtonian rheological properties: viscoelasticity, yield stress, shear thinning and thixotropy. If the components of printing inks were changed, the rheological characteristics such as viscosity, yield stress, viscoelasticity and tack value were considerably varied. Thus, in this paper, the effects of changing the content of rosin modified phenolic resin on rheological properties of the vehicle will be studied. For that, the rheological properties were found by flow, yield stress, creep and oscillation measurements using Bohlin C-VOR Rotational Rheometer. And Emulsion rheology and its microstructure will be investigated.

  • PDF

Comparative Study on Material Constitutive Models of Ice (얼음의 재료 모델 적용 타당성 연구)

  • Choung, Joon-Mo;Nam, Ji-Myung;Kim, Kyung-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.42-48
    • /
    • 2011
  • To define ice as a solid material, mathematical and physical characteristics and their application examples are investigated for several materials' yield functions which include isotropic elastic, isotropic elastic-plastic, classical Drucker-Prager, Drucker-Prager Cap, Heinonen's elliptic, Derradji-Aouat's elliptic, and crushable foam models. Taking into account brittle failure mode of ice subject to high loading rate or extremely low temperature, isotropic elastic model can be better practicable than isotropic elastic-plastic model. If a failure criterion can be properly determined, the elastic model will provide relatively practicable impact force history from ice-hull interactions. On the other hand, it is thought that the soil models can better predict the ice spalling mechanism, since they contain both terms of shear stress-induced and hydrostatic stress-induced failures in the yield function.

Advancements in Polymer-Filler Derived Ceramics

  • Greil, Peter
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.279-286
    • /
    • 2012
  • Microstructure tailoring of filler loaded preceramic polymer systems offers a high potential for property improvement of Si-based ceramics and composites. Advancements in manufacturing of bulk materials by controlling microstructure evolution during thermal induced polymer-ceramic transforma-tion and polymer-filler reactions will be presented. Rate controlled pyrolysis, multilayer gradient laminate design and surface modification by gas solid reaction are demonstrated to yield ceramic components of high fractional density and superior mechanical properties. Emerging fields of applications are presented.