• 제목/요약/키워드: solid waste incinerator

Search Result 87, Processing Time 0.026 seconds

Exposure to PBDEs among Residents Living in an Area Around a Solid Waste Incinerator (폐기물 소각장 주변 지역 주민의 PBDEs 노출)

  • Dong Yun Park;Chae Kwan Lee
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.5
    • /
    • pp.339-350
    • /
    • 2024
  • Background: Polybrominated diphenyl ethers (PBDEs) are used as flame retardants. Wastes burned in solid waste incinerators may contain flame retardants such as PBDEs. Therefore, it is important to study the PBDE exposure of residents in areas around solid waste incinerators. Objectives: This study aimed to analyze the serum PBDE concentration of residents living in an area around a solid waste incinerator and evaluate the factors that could affect PBDE exposure. Methods: The study areas included an exposure area around a solid waste incinerator and a control area (8.6 km away from the exposure area). Participants were 196 women in their 40s, 50s, and 60s, with 98 from each area. The survey investigated participants' age, period of residence, drinking and smoking habits, menopause status, and parity. The medical examination included body mass index (BMI), thyroid stimulating hormone (TSH), and free thyroxine (Free T4). Twenty-two PBDE congeners were analyzed using gas chromatography (Agilent 7890B, Agilent, USA) and mass spectrometry (Xevo TQ-XS, Waters, USA). Mann-Whitney U and Kruskal-Wallis tests were used to compare the significant differences in serum PBDE concentrations by the characteristics of the participants. Multiple regression analysis was performed to evaluate the factors affecting PBDE exposure and the effect of serum PBDE concentration on TSH levels in serum (SAS 9.4). Results: There was a statistically significant difference in serum PBDE concentration by area, age, smoking habits, and menopause status. In the multiple regression analysis result, only the residential area was associated with the serum PBDE concentration. The serum TSH concentration was not associated with serum PBDE concentrations. Conclusions: The serum PBDE concentration of residents in the area around the solid waste incinerator was significantly higher than that of those in the control area. Based on this result it was assessed that the serum PBDE concentration of residents around the solid waste incinerator were affected by the incinerator.

Application of food waste leachate to a municipal solid waste incinerator for reduction of NOx emission and ammonia water consumption

  • Park, Jong Jin;Kim, Daegi;Lee, Kwanyong;Lee, Kyung Tae;Park, Ki Young
    • Environmental Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.171-174
    • /
    • 2015
  • This study investigates the possibility of applying food waste leachate to a municipal solid waste incinerator in order to effectively dispose of the material and to reduce the environmental impact. The spray positions and the quantity of the food waste leachate in municipal solid waste incinerator were adjusted to examine the stability of the process and the environmental effect. The rear of the first combustion chamber was found to be the desirable location for an environmental perspective in this study. At a food waste leachate injection rate of $2m^3/h$, the concentration of the emitted NOx decreased from 130 ppm to 40 ppm. The consumption of ammonia water was reduced by about 36% after adding the food waste leachate. The inclusion of the food waste leachate to the municipal incinerator also increased the amount of steam that was produced. The results of this research indicated that a positive outcome can be expected in terms of diversifying the treatment options for food waste leachate. The results also provide guidance for institutional framework to manage the incineration of the food waste leachate.

Thermal Analysis of Rotary Kiln Incinerator of Municipal Solid Waste (로타리 킬른형 도시 쓰레기 소각로의 전열해석)

  • 박상일;박영재
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2100-2108
    • /
    • 1991
  • A hear transfer model was developed to calculate the temperature distribution in the rotary kiln incinerator of municipal solid waste. The thermo-gravimetric characteristics of waste and the gas-to-waste heat transfer coefficient were determined by comparing the experimental results and model prediction. With this, heat transfer rates by existing heat transfer mechanisms were calculated to be compared each other. The effects of treatment capacity, calorific value of waste, and flow rate and temperature of combustion air on the temperature distribution in the rotary kiln incinerator were predicted by the model developed in this work.

The Geotechnical Properties of Municipal Solid Waste Incinerator Fly Ash and Cement Stabilization (도시고형폐기물 소각 비산재의 지반공학적 특성 및 시멘트 안정화에 관한 연구)

  • 조진우;김지용;한상재;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.528-535
    • /
    • 2000
  • Solid waste incinerator is expected to become widely used in Korea. The incineration of solid waste produces large quantities of bottom and fly ash, which has been disposed of primary by landfilling. However, as landfills become undesirable other disposal method are being sought. In this study, an experimental research is conducted to determine the geotechnical properties of municipal solid waste incinerator fly ash(MSWIF) in order to evaluate the feasibility of using the material for geotechnical applications. Basic pysicochemical characteristics, moisture-density relationship, strength, permeability, and leaching characteristics are examined. The results of MSWIF are compared to other MSWIF and coal fly ash which are used as construction material. In addition, the effectiveness of cement stabilization is investigated using various mix ratios. The result of stabilized mixes are compared to the unstabilized material. Cement stabilization is found to be very effective in reducing permeability, increasing strength, and immobilizing heavy metals. This results indicate that MSWIF with cement stabilization may be used effectively for geotechnical application.

  • PDF

Combined Bed Combustion and Gas Flow Simulation for a Grate Type Incinerator (폐기물 층 연소와 노내 유동 해석)

  • Ryu, Chang-Kook;Shin, Dong-Hoon;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.67-75
    • /
    • 2000
  • Computational fluid dynamics(CFD) analysis of the thermal flow in a municipal solid waste(MSW) incinerator combustion chamber provides crucial insight on the incinerator performance. However, the combustion of the waste bed is typically treated as an arbitrarily selected profile of combustion gas. A strategy for simultaneous simulation of the waste bed combustion and the thermal flow fields in the furnace chamber was introduced to substitute the simple inlet condition. A waste bed combustion model was constructed to predict the progress of combustion in the bed and corresponding generation of the gas phase species, which assumes the moving bed as a packed bed of homogeneous fuel particles. When coupled with CFD, it provides boundary conditions such as gas temperature and species distribution over the grate, and receives radiative heat flux from CFD. The combined simulation successfully predicted the physical processes of the waste bed combustion and its interaction with the flow fields for various design and operating parameters, which was limited in the previous CFD simulations.

  • PDF

Study for a Secondary Air Affecting Fluid Flow in a Solid Waste Incinerator (쓰레기 소각로의 2차공기가 유동현상에 미치는 현상 연구)

  • Lee, Geum-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2924-2932
    • /
    • 1996
  • As the environmental pollution can be greatly reduced and the waste heat can be also recovered through a combustion of municipal solid waste, the incineration begins to be highlighted recently in our country. But it is very difficult to be operated with constant combustion conditions for a long time as the domestic waste is composed of various components, contains a large percentage of water, and has a low heating value. Therefore, the cold flow test and partial hot flow test were conducted in the incinerator by use of injection angles of a secondary air affecting fluid flow as the first action to maintain the optimum combustion conditions. A model to a scale of 1:10 was designed and manufactured through the similarity of model and prototype flows. Velocities and temperatures were measured through the experiment. From the results, fluid flows of secondary air obtained from partial hot flow test correspond almost well with those of main flow obtained from cold flow test. Consequently, injection angles of secondary air are proved to affect main flow decisively.

A Study on the Correlation Level Among Air Pollution from Solid waste Incinerator (고형폐기물 소각로에서 배출되는 대기오염물질간의 상관성에 관한 연구)

  • 조상원
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.183-187
    • /
    • 1999
  • The purpose of this study is providing basic data to control the air pollutants from solid waste incinerator. Incinerating the waste wood, the electrostatic precipitator had the best collection efficiency. The leather incineration had the same collection efficiency as synthetic resin incineration. And the coarse particle collection efficiency was high. As you know in correlation of leather incineration. pollutants produced a from incinerator are mostly fine particles. If the scrubber used only in the process produced a lot of fine particles. It is adequate to use the above control devices, together with high efficiency collector like bag-filter. To select the adequate control devices, it is required to investigate the size distribution before establishing control devices.

  • PDF

Study on Co-incineration of Municipal Solid Waste and Organic Sludges (도시쓰레기와 유기성 하수 슬러지 혼합소각에 관한 연구)

  • Jurng, Jong-Soo;Chin, Sung-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.238-244
    • /
    • 2005
  • This study performs the pilot-plant experiments to evaluate the effect of the oxygen enrichment on the co-incineration of municipal solid waste and organic sludge from a wastewater treatment facility. The design capacity of the stoker-type incinerator pilot-plant is 150 kg/h. Combustion chamber temperatures were measured as well as the stack gas concentrations, i.e., NOx, CO, and the residual oxygen. The maximum ratio of organic sludge waste to the total waste input is 30%. Also the oxygen-enriched air with 23% of oxygen in supplied air is used for stable combustion. As the co-incineration ratio of the sludge increased up to 30% of the total waste input, the primary and the secondary combustion chamber temperature was decreased $to900^{\circ}C$ (primary combustion chamber), $750^{\circ}C$(secondary combustion chamber), respectively, approximately $200^{\circ}C$ below the incineration temperature of the domestic waste only (primary: $1,100^{\circ}C$, secondary: $950^{\circ}C$). However, if the supplied air was enriched to 22% oxygen content in air, the incinerator temperature was high enough to burn the waste mixture with 30% sludge, which has the heating value of 1,600 kcal/kg.

  • PDF

Analysis of Combustion Air Flow in Incinerator (소각로의 연소 공기 유동 해석)

  • Lee, Dong-Hyuk
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.26-32
    • /
    • 2022
  • It is known that the fluidized bed incinerator, which is the subject of analysis, shows excellent performance in heat and mass transfer due to excellent mixing and contact performance between fluidized sand and fuel, and also shows relatively good combustion characteristics thanks to good mixing and long residence time for low-grade fuels. have. In this study, air flow analysis is performed to understand the characteristics of co-firing of sludge, waste oil and solid waste in the fluidized bed incinerator, flow characteristics of flue gas, and discharge characteristics of pollutants.The fluidized bed incinerator subject to analysis is a facility that incinerates factory waste and general household waste together with sludge, with a processing capacity of 32 tons/day. to be. In addition, the operation method was designed for continuous operation for 24 hours. As a result, it can be seen that the lower combustion air and the introduced secondary air are changed to a strong turbulence and swirl flow form and exit through the outlet while rotating inside the freeboard layer. The homogeneous one-way flow form before reaching the secondary air nozzle has very high diffusivity with the high-speed jet flow of the nozzle.

The Characteristics of Mercury Emission from Municipal Solid Waste (MSW) Incinerator Stack (폐기물 소각시설 배가스에서의 수은 배출특성)

  • Lee Han-Kook
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.378-387
    • /
    • 2004
  • This study was carried to investigate the emission characteristics of mercury from domestic and industrial MSW (municipal solid waste) incinerator stacks. The mercury concentration levels of flue gas from 32 MSW incinerators stacks selected were above the criteria level ($5{\mu}g/S\;m^3$). MSWI facilities exceeding the criteria levels in Korea are due to the poor units comparison of combustion chamber(CC)-cyclone(CY)-stack. So, the mercury from MSW incinerators stack were suspected to contaminate the natural system unless the MSW incinerators were properly controlled. Mean-while, the relationship between mercury concentration and temperature of flue gas in MSW incinerator stacks were examined at two temperature ranges (Group A : $29.85{\sim}327.63^{\circ}C$, Group B : $446.9{\sim}848.15^{\circ}C$). The mercury concentration in flue gas with high temperature range was higher than that of flue gas with low temperature rage. This mean that the temperature of flue gas plays an important role in mercury control in MSW incinerator. The emission characteristics oi mercury was also evaluated by using the correlation matrix between the mercury and NOx, $PM_{10}$, moisture (MO.) at both low temperature and high temperature flue gas ranges. The mercury concentration was mainly affected by NOx, $PM_{10}$. moisture (MO.) at low temperature range, while the mercury concentration at high temperature flue gas was mainly affected by NOx, moisture (MO.). From these results, it was suggested that the temperature of cooling system and the air pollution control device should be properly regulated in order to control mercury of flue gas in MSWI incinerator.