• Title/Summary/Keyword: solid track detector

Search Result 24, Processing Time 0.027 seconds

The effect of geometrical parameters on the radon emanation coefficient and different radon parameters

  • Entesar H. El-Araby;A. Azazi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4096-4101
    • /
    • 2023
  • Radon is a radioactive gas produced from the uranium-238 series. Radon gas affects public health and is the second cause of lung cancer. The study samples were collected from one area of the city of Jazan, southwest of the Kingdom of Saudi Arabia. The influence of engineering and physical parameters on the emanation coefficient of gas and other gas parameters was studied. Parameters for radon were measured using a CR-39 Solid-State Nuclear Track Detector (SSNTD) through a sealed emission container. The results showed that the emanation coefficient was affected directly by the change in the grain size of the soil. All parameters of measured radon gas have the same behavior as the emanation coefficient. The relationship between particle size and emanation coefficient showed a good correlation. The values of the emanation coefficient were inversely affected by the mass of the sample, and the rest of the parameters showed an inverse behavior. The results showed that increasing the volume of the container increases the accumulation of radon sons on the wall of the container, which increases the emission factor. The rest of the parameters of radon gas showed an inverse behavior with increasing container size. The results concluded that changing the engineering and physical parameters has a significant impact on both the emanation coefficient and all radon parameters. The emanation coefficient affects the values of the radiation dose of an alpha particle.

Radiography with Low Energy Protons Generated from Ultraintense Laser-plasma Interactions

  • Choi, Chang-Il;Lee, Dong-Hoon;Kang, Byoung-Hwi;Kim, Yong-Kyun;Choi, Il-Woo;Sung, Jae-Hee;Kim, Chul-Min;Kim, I-Jong;Yu, Tae-Jun;Lee, Seong-Ku;Pae, Ki-Hong;Hafz, Nasr;Jeong, Tae-Moon;Ko, Do-Kyeong;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.28-32
    • /
    • 2009
  • In order to obtain high quality images of thin objects, we performed an experiment of proton radiography by using low energy protons generated from the interaction of an ultrashort ultraintense laser with solid targets. The protons were produced from a thin polyimide target irradiated by the laser pulse, and their maximum energy was estimated at up to 1.8 MeV. A CR-39 nuclear track detector was used as a proton radiography screen. The proton images were obtained by using an optical microscope and the spatial resolution was evaluated by a Modulation Transfer Function (MTF). We have achieved about $10\;{\mu}m$ spatial resolution of images. The obtained spatial resolution shows about $4{\sim}5$ times better value than the conventional X-ray radiography for inspection or non-destructive test (NDT) purpose.

Techniques for Handling Uranium Particles with Micro-tools (미세도구를 사용한 미세크기의 우라늄입자 취급기술)

  • Pyo, Hyung-Ryul;Park, Yong-Joon;Sohn, Se-Chul;Jeon, Young-Shin;Song, Byoung-Chul;Jee, Kwang-Yong;Kim, Won-Ho
    • Analytical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.440-445
    • /
    • 2000
  • The techniques for manipulation of various micro-tools were essential for particle isolation and chemical analysis of micro-size particles. This report described the detailed techniques for the preparation and handling of several micro-tools. Presence of uranium particles in smeared filter paper were identified by using the solid track detector. The uranium particles were isolated using the micro-tools under the stereomicroscope and then transferred to the filament of TIMS for the determination of isotope ratios.

  • PDF

Calibration of CR-39 for Hadron Radiotherapy using 400 MeV/u C ions (400 MeV/u 탄소 이온에 대한 방사선치료 선량 측정용 고체비적검출기의 교정)

  • Kim, Sunghwan;Nam, Uk-Won;Lee, Jaejin;Park, Won-Kee;Pyo, Jeonghyun;Moon, Bong-Kon
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.43-49
    • /
    • 2016
  • In this study, equivalent dose and LET (Linear Energy Transfer) calibration of CR-39 SSNTD (Solid State Nuclear Track Detector) were performed using 400 MeV/u C heavy ions in HIMAC (Heavy Ion Medical Accelerator in Chiba) for high LET radiation therapy. The irradiated CR-39 SSNDTs were etched according the etching condition of JAXA (Japan Aerospace Exploration Agency). And the etched SSNTDs were analyzed by using Image J. Determined frequency mean dose (${\bar{y_D}}$)and dose-mean lineal energy (${\bar{y_F}}$)of 400 MeV/u C are about 8.5keV/mm and 10.1 keV/mm, respectively by using the CR-39 SSNTD. This value is very similar to the results calculated by GEANT4 Monte Carlo simulation and measured with TEPC (Tissue Equivalent Proportional Counter) active radiation detector. We could determine the equivalent dose and LET calibration factors of CR-39. And we confirmed that the CR-39 SSNTD was useful for high LET radiation dosimetry in hadron radiotherapy.