• Title/Summary/Keyword: solid state fermentation

Search Result 145, Processing Time 0.023 seconds

Medium optimization for keratinase production by a local Streptomyces sp. NRC 13S under solid state fermentation

  • Shata, Hoda Mohamed Abdel Halim;Farid, Mohamed Abdel Fattah
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.2
    • /
    • pp.119-129
    • /
    • 2013
  • Thirteen different Streptomyces isolates were evaluated for their ability to produce keratinase using chicken feather as a sole carbon and nitrogen sources under solid state fermentation (SSF). Streptomyces sp. NRC 13S produced the highest keratinase activity [1,792 U/g fermented substrate (fs)]. The phenotypic characterization and analysis of 16S rDNA sequencing of the isolate were studied. Optimization of SSF medium for keratinase production by the local isolate, Streptomyces sp. NRC13S, was carried out using the one-variable-at-a-time and the statistical approaches. In the first optimization step, the effect of incubation period, initial moisture content, initial pH value of the fermentation medium, and supplementation of some agro-industrial by-products on keratinase production were evaluated. The strain produced about 2,310 U/gfs when it grew on chicken feather with moisture content of 75% (w/w), feather: fodder yeast ratio of 70:30 (w/w), and initial pH 7 using phosphate buffer after 8 days. Based on these results, the Box-Behnken design and response surface methodology were applied to find out the optimal conditions for the enzyme production. The corresponding maximal production of keratinase was about 2,569.38 U/gfs.

A New Raw-Starch-Digesting ${\alpha}$-Amylase: Production Under Solid-State Fermentation on Crude Millet and Biochemical Characterization

  • Maktouf, Sameh;Kamoun, Amel;Moulis, Claire;Remaud-Simeon, Magali;Ghribi, Dhouha;Chaabouni, Semia Ellouz
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.489-498
    • /
    • 2013
  • A new Bacillus strain degrading starch, named Bacillus sp. UEB-S, was isolated from a southern Tunisian area. Amylase production using solid-state fermentation on millet, an inexpensive and available agro-resource, was investigated. Response surface methodology was applied to establish the relationship between enzyme production and four variables: inoculum size, moisture-to-millet ratio, temperature, and fermentation duration. The maximum enzyme activity recovered was 680 U/g of dry substrate when using $1.38{\times}10^9$ CFU/g as inoculation level, 5.6:1 (ml/g) as moisture ratio (86%), for 4 days of cultivation at $37^{\circ}C$, which was in perfect agreement with the predicted model value. Amylase was purified by Q-Sepharose anion-exchange and Sephacryl S-200 gel filtration chromatography with a 14-fold increase in specific activity. Its molecular mass was estimated at 130 kDa. The enzyme showed maximal activity at pH 5 and $70^{\circ}C$, and efficiently hydrolyzed starch to yield glucose and maltose as end products. The enzyme proved its efficiency for digesting raw cereal below gelatinization temperature and, hence, its potentiality to be used in industrial processes.

β-Glucosidase Recovery from a Solid-State Fermentation System by Aspergillus niger (Aspergillus niger 의 고체상태 발효 시스템에서의 β-Glucosidase 회수)

  • Chandra, M. Subhosh;Reddy, B. Rajasekhar;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.999-1004
    • /
    • 2010
  • Investigations were carried out on a $\beta$-glucosidase produced by Aspergillus niger under solid-state fermentation conditions as a model of enzyme recovery from fermented wheat bran. The leaching efficiency of distilled water to recover the enzyme from the fermented bran was higher than acetate buffer, citrate buffer, citrate-phosphate buffer and 5% methanol; thus, the conditions were further optimized with distilled water as the extracting agent. After fermented bran was washed three times with distilled water for 1.5 hr each under shaking conditions at 1:5 solid to solvent ratio, a maximum recovery of 0.025 U/g of wheat bran was obtained.

Fuzzy Logic Control of Rotating Drum Bioreactor for Improved Production of Amylase and Protease Enzymes by Aspergillus oryzae in Solid-State Fermentation

  • Sukumprasertsri, Monton;Unrean, Pornkamol;Pimsamarn, Jindarat;Kitsubun, Panit;Tongta, Anan
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.335-342
    • /
    • 2013
  • In this study, we compared the performance of two control systems, fuzzy logic control (FLC) and conventional control (CC). The control systems were applied for controlling temperature and substrate moisture content in a solidstate fermentation for the biosynthesis of amylase and protease enzymes by Aspergillus oryzae. The fermentation process was achieved in a 200 L rotating drum bioreactor. Three factors affecting temperature and moisture content in the solid-state fermentation were considered. They were inlet air velocity, speed of the rotating drum bioreactor, and spray water addition. The fuzzy logic control system was designed using four input variables: air velocity, substrate temperature, fermentation time, and rotation speed. The temperature was controlled by two variables, inlet air velocity and rotational speed of bioreactor, while the moisture content was controlled by spray water. Experimental results confirmed that the FLC system could effectively control the temperature and moisture content of substrate better than the CC system, resulting in an increased enzyme production by A. oryzae. Thus, the fuzzy logic control is a promising control system that can be applied for enhanced production of enzymes in solidstate fermentation.

Nutrient and ruminal fermentation profiles of Camellia seed residues with fungal pretreatment

  • Yang, Chunlei;Chen, Zhongfa;Wu, Yuelei;Wang, Jiakun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.357-365
    • /
    • 2019
  • Objective: The experiment was conducted to evaluate the effects of four fungal pretreatments on the nutritional value of Camellia seed residues, and to evaluate the feeding value of pretreated Camellia seed residues for ruminants. Methods: Camellia seed residues were firstly fermented by four lignin degrading fungi, namely, Phanerochaete chrysosporium (P. chrysosporium)-30942, Trichoderma koningiopsis (T. koningiopsis)-2660, Trichoderma aspellum (T. aspellum)-2527, or T. aspellum-2627, under solid-state fermentation (SSF) conditions at six different incubation times. The nutritional value of each fermented Camellia seed residues was then analyzed. The fermentation profiles, organic matter degradability and metabolizable energy of each pre-treated Camellia seed residue were further evaluated using an in vitro rumen fermentation system. Results: After 5 days of fermentation, P. chrysosporium-30942 had higher degradation of lignin (20.51%), consumed less hemicellulose (4.02%), and the SSF efficiency reached 83.43%. T. koningiopsis-2660 degraded more lignin (21.54%) and consumed less cellulose (20.94%) and hemicellulose (2.51%), the SSF efficiency reached 127.93%. The maximum SSF efficiency was 58.18% for T. aspellum-2527 and 47.61% for T. aspellum-2627, appeared at 30 and 15 days respectively. All the fungal pretreatments significantly improved the crude protein content (p<0.05). The Camellia seed residues pretreated for 5 days were found to possess significantly increased organic matter degradability, volatile fatty acid production and metabolizable energy (p<0.05) after the treatment of either P. chrysosporium-30942, T. koningiopsis-2660 or T. aspellum-2527. The fungal pretreatments did not significantly change the rumen fermentation pattern of Camellia seed residues, with an unchanged ratio of acetate to propionate. Conclusion: The fungi showed excellent potential for the solid-state bioconversion of Camellia seed residues into digestible ruminant energy feed, and their shorter lignin degradation characteristics could reduce loss of the other available carbohydrates during SSF.

Enzyme Activities and Substrate Degradation by Fungal Isolates on Cassava Waste During Solid State Fermentation

  • Pothiraj, C.;Eyini, M.
    • Mycobiology
    • /
    • v.35 no.4
    • /
    • pp.196-204
    • /
    • 2007
  • The growth and bioconversion potential of selected strains growing on cassava waste substrate during solid state fermentation were assessed. Rhizopus stolonifer showed the highest and the fastest utilization of starch and cellulose in the cassava waste substrate. It showed 70% starch utilization and 81% cellulose utilization within eight days. The release of reducing sugars indicating the substrate saccharification or degradation potential of the organisms reached the highest value of 406.5 mg/g by R. stolonifer on cassava waste during the eighth day of fermentation. The protein content was gradually increased (89.4 mg/g) on the eighth day of fermentation in cassava waste by R. stolonifer. The cellulase and amylase activity is higher in R. stolonifer than A. niger and P. chrysosporium. The molecular mass of purified amylase and cellulase seemed to be 75 KDal, 85 KDal respectively.

Enhanced Lovastatin Production by Solid State Fermentation of Monascus ruber

  • Xu Bao-Jun;Wang Qi-Jun;Jia Xiao-Qin;Sung Chang-Keun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.78-84
    • /
    • 2005
  • The purpose of this study was to optimize the solid state cultivation of Monascus ruber on sterile rice. A single-level-multiple-factor and a single-factor-multiple-level experimental design were employed to determine the optimal medium constituents and to optimize carbon and nitrogen source concentrations for lovastatin production. Simultaneous quantitative analyses of the ${\beta}$-hydroxyacid form and ${\beta}$-hydroxylactone for of lovastatin were performed by the high performance liquid chromatography (HPLC) method with a UV photodiode-array (PDA) detector. The total lovastatin yield ($4{\sim}6\;mg/g$, average of five repeats) was achieved by adding soybean powder, glycerol, sodium nitrate, and acetic acid at optimized levels after 14 days of fermentation. The maximal yield of lovastatin under the optimal composition of the medium increased by almost 2 times the yield observed prior to optimization. The experimental results also indicated that the ${\beta}$-hydroxylactone form of lovastatin (LFL) and the ${\beta}$-hydroxyacid form of lovastatin (AFL) simultaneously existed in solid state cultures of Monascus ruber. while the latter was the dominant form in the middle-late stage of continued fermentation. These results indicate that optimized culture conditions can be used for industrial production of lovastatin to obtain high yields.

Extraction of β-glucosidase from Bagasse Fermented by Mixed Culture under Solid State Fermentation

  • Shata, Hoda Mohamed Abdel Halim;Farid, Mohamed Abdel Fattah
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.3
    • /
    • pp.197-203
    • /
    • 2014
  • Various parameters such as solvent selection, concentration, solid/liquid ratio, soaking time, temperature, stationary, shaking conditions, and repeated extractions were investigated in order to determine the optimum extraction conditions of ${\beta}$-glucosidase from bagasse fermented by mixed culture of Aspergillus niger NRC 7A and Aspergillus oryzae NRRL 447. Among various solvents tested, non ionic detergents gave the best results than the inorganic or organic salt solutions and distilled water. The optimum conditions for extraction of ${\beta}$-glucosidase were 30 min soaking time at $40^{\circ}C$ under shaking condition at 150 rpm, with solid/liquid ratio 1:15 (w/v), which yielded $2882.74{\pm}95.52U/g$ fermented culture (g fc) of enzyme activity. With repeated washes under the above optimum conditions, the results showed that enzyme extracted in the $1^{st}$ and $2^{nd}$ washes represents about 90% of the total activity.

Production of Bioactive Components and Anti-Oxidative Activity of Soybean Grit Fermented with Bacillus subtilis HA according to Fermentation Time (Bacillus subtilis HA를 이용한 soybean grit의 고체발효 기간에 따른 생리활성물질 생산 및 항산화 효과)

  • Kim, Ji-Eun;Lee, Sam-Pin
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.179-185
    • /
    • 2009
  • Soybean grits, fortified with various bioactive components, were produced by solid-state fermentation using Bacillus subtilis HA. ${\alpha}$-Amylase activity gradually increased during fermentation over 5 days. Fibrinolytic and protease activities were highest in the soybean grits fermented for 7 days. The grits fermented for 5 days also showed the highest tyrosine content, indicating a higher peptide content. Peptides of low molecular weight (below 3,000 daltons) and browning pigments increased with increasing fermentation time. The fermented soybean grits showed higher contents of total phenolic compounds, to approximately 18 mg/g. DPPH free radical scavenging effects were higher in the soybean grits fermented for 3 days. Also, ABTS radical scavenging effects were greater in the fermented grits compared to the unfermented grits. Overall, the soybean grits fermented by solid-state fermentation for 5 days showed enhanced production of bioactive compounds and greater antioxidant properties.

Improvement of Fungal Cellulase Production by Mutation and Optimization of Solid State Fermentation

  • Vu, Van Hanh;Pham, Tuan Anh;Kim, Keun
    • Mycobiology
    • /
    • v.39 no.1
    • /
    • pp.20-25
    • /
    • 2011
  • Spores of Aspergillus sp. SU14 were treated repeatedly and sequentially with $Co^{60}$ ${\gamma}$-rays, ultraviolet irradiation, and N-methyl-N'-nitro-N-nitrosoguanidine. One selected mutant strain, Aspergillus sp. SU14-M15, produced cellulase in a yield 2.2-fold exceeding that of the wild type. Optimal conditions for the production of cellulase by the mutant fungal strain using solid-state fermentation were examined. The medium consisted of wheat-bran supplemented with 1% (w/w) urea or $NH_4Cl$, 1% (w/w) rice starch, 2.5 mM $MgCl_2$, and 0.05% (v/w) Tween 80. Optimal moisture content and initial pH was 50% (v/w) and 3.5, respectively, and optimal aeration area was 3/100 (inoculated wheat bran/container). The medium was inoculated with 25% 48 hr seeding culture and fermented at $35^{\circ}C$ for 3 days. The resulting cellulase yield was 8.5-fold more than that of the wild type strain grown on the basal wheat bran medium.