• Title/Summary/Keyword: solid sections

Search Result 103, Processing Time 0.027 seconds

Producing the insoles for flat feet of senior men using 3D systems based on 3D scanning, 3D modeling, and 3D printing (3D 스캐닝, 3D 모델링, 3D 프린팅 기반의 3D 시스템에 의한 시니어 평발용 인솔 제작)

  • Oh, Seol Young;Suh, Dongae
    • The Research Journal of the Costume Culture
    • /
    • v.25 no.3
    • /
    • pp.270-284
    • /
    • 2017
  • This study aimed to create 3D-printed insoles for flat-footed senior men using 3D systems. 3D systems are product-manufacturing systems that use 3-dimensional technologies like 3D scanning, 3D modeling, and 3D printing. This study used a 3D scanner (NexScan2), 3D CAD programs including Rapidform, AutoCAD, SolidWorks, Nauta+ compiling program, and a 3D printer. In order to create insoles for flat-footed senior men, we analyzed horizontal sections of 3D foot scans We selected 20 flat-footed and 20 normal-footed subjects. To make the 3D insole models, we sliced nine lines on the surface of the subjects' 3D foot scans, and plotted 144 points on the lines. We calculated the average of these 3D coordinates, then located this average within the 3D space of the AutoCAD program and created 3D sole models using the loft surface tools of the SolidWorks program. The sole models for flat feet differed from those of normal feet in the depth of the arch at the inner sideline and the big toe line. We placed the normal-footed sole model on a flat-footed sole model, and the combination of the two models resulted in the 3D insole for flat feet. We printed the 3D modeled insole using a 3D printer. The 3D printing material was an acrylic resin similar to rubber. This made the insole model flexible and wearable. This study utilized 3D systems to create 3D insoles for flat-footed seniors and this process can be applied to manufacture other items in the fashion industry as well.

Estimation of the Superelevation Safety Factor Considering Operating Speed at 3-Dimensional Alignment (입체선형의 주행속도를 고려한 편경사 안전율 산정에 관한 연구)

  • Park, Tae-Hoon;Kim, Joong-Hyo;Park, Je-Jin;Park, Ju-Won;Ha, Tae-Jun
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.159-163
    • /
    • 2005
  • The propriety between suppliers and demanders in geometric design is very important. Although the final purpose of constructing roads is to concern about the driver s comfort, unfortunately, it has not been considered so far. We've considered the regularity and quickness in considering driver's comfort but there should be considered the safety for the accident as well. If drivers are appeared to be more speeding than designer's intention, there will be needed some supplements to increase the safety rate for the roads. Even if both an upward and downward section are supposed to exist at the same time for solid geometry of the roads like this, it is true that the recent design for the 3-D solid geometry section has been done as flat 2-D and the minimum plane curve radius and the maximum cant have been decided just by calculating without considering operating speed between an upward and downward section at the same point. In this investigation, thus, I'd like to calculate the safety of the cant by considering the speed features of the solid geometry for the first lane of four lane rural roads. To begin with, we investigated the driving speed of the car, which is not been influenced by a preceding car to analyze the influence of the geometrical structure by using Nc-97. Secondly, we statistically analyzed the driving features of the solid geometry after comparing the 6 sections, that is, measuring the driving speed feature at 12 points and combining the influence of the vertical geometry and plane geometry to the driving speed of the plane curve which was researched before. Finally, we estimated the value of cant which considers the driving speed not by using it which has applied uniformly without considering it properly, though there were some differences between a designed speed and driving speed through the result of the basic statistical analysis but by introducing the new safety rate rule, a notion of ${\alpha}$. As a result of the research, we could see the driving features of the car and suggest the safety rate which considers these. For considering the maximum cant, if we apply the safety rate, the result of this experiment, which considers 3-D solid geometry, there'll be the improvement of the driver's safety for designing roads. In addition, after collecting and analyzing the data for the road sections which have various geometrical structures by expanding this experiment it is considered that there should be developed the models which considers 3-D solid geometry.

Dynamic Analysis for a Flexible Track Modeling of Turnout (분기기 궤도 유연체 모델링 및 동역학 해석)

  • Kim, Man-Cheol;Hwang, Sung-Ho;Hwang, Kwang-Ha;Hyun, Sang-Hak
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2830-2837
    • /
    • 2011
  • In this paper, a flexible track modeling of turnout was developed and dynamic characteristics of turnout rails were analyzed when a vehicle passed through the turnout. The flexible track modeling is effective to the stiffness and durability design of turnout, because it can capture the deformation and dynamic stress due to the collision of between wheels and rails when the vehicle move to the tongue rail. Also, a more accurate running safety can be obtained by considering the interaction between wheel and rail deformation. Solid finite elements were used for variable cross-sections of rails and the variation of rubber stiffness was modeled. The proposed flexible track modeling in this paper was verified to be valid by comparison with the experiment of the turnout system.

  • PDF

A Three-Dimensional Finite Element Analysis of Hot Extrusion through Square Dies by automatic remeshing Technique with modular concept (자동 단위체 격자재구성법을 이용한 열간 평금형압출의 3차원 유한요소해석)

  • 강연식;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.64-73
    • /
    • 1994
  • An updated Lagrangian finite element analysis with automatic remeshing scheme is applied to the three-dimensional hot extrusion through landless square dies. In the remeshing procedure, it is very difficult that the meshes are generated automatically with consideration of physical characteristics. In the presented study, the mesh generation is accomplished by modular concept. The generated meshes by modular concept have advantages, especially for three-dimensional problems, such as economized computational time and consideration of physical characteristic. In the problem, orifice shapes of square die are divided into two for the extrusion of solid sections. The orifice adaptive modules are developed for each type and the numerical examples are carried out for each type.

  • PDF

Foam Filling Effect on Bending Collapse Characteristics for Member Section Type (부재단면 형상에 따른 부재 굽힘붕괴 특성의 폼 충진 효과)

  • Lee, Il-Seok;Kang, Sung-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.41-49
    • /
    • 2007
  • More diversified and strengthened safety regulations require higher safety vehicle with less weight. The structural foam can play a role for restraining section distortion of main body members undergoing bending collapse at vehicle crash. In this study, using structural foam modeling technology, validated in previous work, the bending collapse characteristics were evaluated for two types of circular and actual vehicle body frame sections. With changing the foam filling method, outer panel thickness and section shape, load carrying capability and absorbed energy were observed. The results indicate valuable design strategy for effectively elevating bending collapse performance of body members with foam filled.

THREE-DIMENSIONAL COMPUTED TOMOGRAPHY FOR EVALUATION AND PLANNING OF ORAL AND MAXILLOFACIAL SURGERY ; REPORT OF CASES (3차원 입체영상 CT의 구강외과 영역에서의 활용)

  • Kim, Jin;Ro, Hong-Sup
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.19 no.4
    • /
    • pp.343-350
    • /
    • 1997
  • Diagnosis of maxillofacial lesions is very difficult. Recent developments in computed tomography enable the production of three dimnesional images of complex anatomical structures from a series of conventional computed tomographic sections. Methods of three-dimensional analysis of computed tomographic images have recently been described. Mostly, reports have concentrated on applications relative to congenital deformities. In this report, one method of three dimensional reformatting is reviwes. Images formed by this method have solid surface appearance and can be color enhanced and manipulated to isolate anatomic structures of interest. The program allows tissue densitis, volumes, and distances. This report emphasizes maxillofacial applications other than those previously reported in the surgical and radiological literature.

  • PDF

Process Simulation of Investment Casting for Large Gas Turbine Component (대형 가스터빈 부품의 정밀주조 응고해석)

  • Seo, Seong-Mun;Jo, Chang-Yong;Lee, Jae-Hyeon;Choe, Seung-Ju
    • 연구논문집
    • /
    • s.29
    • /
    • pp.173-183
    • /
    • 1999
  • The vacuum investment casting process for a large gas turbine component, Inner Preswirl Support (IPS), was simulated by using commercial FEM package ProCAST(TM) with view factor radiation method. The solid fraction in mushy zone was directly measured by Differential thermal analysis(DTA-DSC mode). Three types gating design. considering liquid flow and heat release through it. were proposed. Solidification had begun at the ribs or thin sections of the IPS casting and advanced further through the upper and lower gates. The computed temperature gradient G and G/R values at 70% solidified temperature were used for prediction of microshrinkage formation during casting. The effect of mold preheat on the thermal history of the casting displayed minute effect on the microshrinkage formation.

  • PDF

Theory of Thin-Walled, Pretwisted Composite Beams with Elastic Couplings

  • Jung, Sung-Nam;Kim, Chang-Joo;Ko, Jin-Hwan;Kim, Chang-Wan
    • Advanced Composite Materials
    • /
    • v.18 no.2
    • /
    • pp.105-119
    • /
    • 2009
  • In this work, the structural response of thin-walled composite beams with pretwist angle is investigated by using a mixed beam approach that combines the stiffness and flexibility methods in a unified manner. The Reissner's semi-complimentary energy functional is used to derive the stiffness matrix that approximates the beam in an Euler-Bernoulli level for extension and bending and Vlasov level for torsion. The bending and torsion-related warpings induced by the pretwist effects are derived in a closed form. The developed theory is validated with available literature and detailed finite element structural analysis results using the MSC/NASTRAN. Pretwisted composite beams with rectangular solid and thin-walled box sections are illustrated to validate the current approach. Acceptable correlation has been achieved for cases considered in this study. The effects of pretwist and fiber orientation angles on the static behavior of pretwisted composite beams are also studied.

Free Vibrations of Circular Curved Beams with Constant Volume (일정체적 원호형 곡선보의 자유진동)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Choi, Jong-Min;Park, Chang-Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.570-579
    • /
    • 2011
  • This paper deals with free vibrations of the circular curved beams with constant volume, whose cross sectional shapes are the circular solid cross-sections. Volumes of the objective beam are always held in constant regardless shape functions of the cross-sectional radius. The shape functions are chosen as the linear, parabolic and sinusoidal ones. Ordinary differential equations governing free vibrations of such beam are derived and solved numerically for determining the natural frequencies. In numerical examples, the hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. As the numerical results, relationships between frequency parameters and various beam parameters such as rise ratio, section ratio, elasticity ratio, volume ratio, slenderness ratio and taper type are reported in tables and figures.

NUMERICAL SIMULATION ON A VOLUTE OF STRAIGHT CONICAL DUCT TYPE BY MULTI-BLOCK GRID (다중 블록 격자를 이용한 원뿔 직관 모양의 벌류트 유동의 수치해석)

  • Bae, H.;Kang, H.G.;Yoon, J.S.;Park, K.C.;Chang, K.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.1-7
    • /
    • 2006
  • Numerical investigation of a centrifugal compressor volute having a modified straight conical duct hill been made. Three-dimensional Reynolds-Averaged Navier-Stokes equations with $k-{\varepsilon}$ turbulence equation are solved To avoid coordinate singularity at the central axis of the duct, multi-block H-type grid is generated on the circular cross-sections of the volute and stretched toward the solid wall boundary. We obtained numerical results with three different mass flow rates at the volute inlet, namely, with the inlet conditions that give small, medium and large mass flow rates at the outlet of the conical duct. Agreement with the experimental results is observed.