• 제목/요약/키워드: solid oxide fuel cells

검색결과 301건 처리시간 0.024초

Materials Chemical Point of View for Durability Issues in Solid Oxide Fuel Cells

  • Yokokawa, Harumi;Horita, Teruhisa;Yamaji, Katsuhiko;Kishimoto, Haruo;Brito, M.E.
    • 한국세라믹학회지
    • /
    • 제47권1호
    • /
    • pp.26-38
    • /
    • 2010
  • Degradation in Solid Oxide Fuel Cell performance can be ascribed to the following fundamental processes from the materials chemical point of view; that is, diffusion in solids and reaction with gaseous impurities. For SOFC materials, diffusion in solids is usually slow in operation temperatures $800\sim1000^{\circ}C$. Even at $800^{\circ}C$, however, a few processes are rapid enough to lead to some degradations; namely, Sr diffusion in doped ceria, cation diffusion in cathode materials, diffusion related with metal corrosion, and sintering of nickel anodes. For gaseous impurities, chromium containing vapors are important to know how the chemical stability of cathode materials is related with degradation of performance. For LSM as the most stable cathode among the perovskite-type cathodes, electrochemical reduction reaction of $CrO_3$(g) at the electrochemically active sites is crucial, whereas the rest of the cathodes have the $SrCrO_4$ formation at the point where cathodes meet with the gases, leading to rather complicated processes to the degradations, depending on the amount and distribution of reacted Cr component. These features can be easily generalized to other impurities in air or to the reaction of nickel anodes with gaseous impurities in anode atmosphere.

Electrochemical Properties of La4Ni3O10-GDC Composite Cathode by Facile Sol-gel Method for IT-SOFCs

  • Choi, Sihyuk;Kim, Guntae
    • 한국세라믹학회지
    • /
    • 제51권4호
    • /
    • pp.265-270
    • /
    • 2014
  • Among the Ruddlesden-Popper series, $La_4Ni_3O_{10}$ has received widespread attention as a promising cathode material by reason of its favorable properties for realizing high performance of intermediate temperature solid oxide fuel cells (IT-SOFCs). The $La_4Ni_3O_{10}$ cathode is prepared using the facile sol-gel method by employing tri-blockcopolymer (F127) to obtain a single phase in a short sintering time. There are no reactions between the $La_4Ni_3O_{10}$ cathode and the $Ce_{0.9}Gd_{0.1}O_{2-\delta}$ (GDC) electrolyte upon sintering at $1000^{\circ}C$, indicating that the $La_4Ni_3O_{10}$ cathode has good chemical compatibility with the GDC electrolyte. The maximum electrical conductivity of $La_4Ni_3O_{10}$ reaches approximately 240 S $cm^{-1}$ at $100^{\circ}C$ and gradually decreases with increasing temperaturein air atmosphere. The area specific resistance value of $La_4Ni_3O_{10}$ composite with 40 wt% GDC is $0.435{\Omega}cm^2$ at $700^{\circ}C$. These data allow us to propose that the $La_4Ni_3O_{10}$-GDC composite cathode is a good candidate for IT-SOFC applications.

전자빔 물리증착을 이용한 고체 산화물 연료전지의 제조: II. 단전지 성능 (Fabrication of Solid Oxide Fuel Cells via Physical Vapor Deposition with Electron Beam: II. Unit Cell Performance)

  • 김형철;박종구;정화영;손지원;김주선;이해원;이종호
    • 한국세라믹학회지
    • /
    • 제43권5호
    • /
    • pp.299-303
    • /
    • 2006
  • In this paper, anode supported SOFC with columnar structured YSZ electrolyte was fabricated via Electron Beam Physical Vapor Deposition (EBPVD) method. Liquid condensation process was employed for the preparation of NiO-YSZ substrate and the high power electron beam deposition method was used for the deposition of YSZ electrolyte film. Double layered cathode with LSM-YSZ and LSM was printed on electrolyte via screen-printing method and fired at $1150^{\circ}C$ in air atmosphere for 3 h. The electrochemical performance and the long-term stability of $5{\times}5cm^2$ single cell were investigated with DC current-voltage characteristics and AC-impedance spectroscopy. According to the investigation, $5{\times}5cm^2$ sized unit cell showed the maximum power density of around $0.76W/cm^2$ at $800^{\circ}C$ and maintained the stable performance over 400 h.

전사지를 이용한 다전지식 평관형 고체산화물 연료전지 제작 및 셀 특성 (Fabrication and Cell Properties of Flattened Tube Segmented-in-Series Solid Oxide Fuel Cell-Stack Using Decalcomania Paper)

  • 안용태;지미정;박선민;신상호;황해진;최병현
    • 한국재료학회지
    • /
    • 제23권3호
    • /
    • pp.206-210
    • /
    • 2013
  • In the segmented-in-series solid-oxide fuel cells (SIS-SOFCs), fabrication techniques which use decalcomania paper have many advantages, i.e., an increased active area of the electrode; better interfacial adhesion property between the anode, electrolyte and cathode; and improved layer thickness uniformity. In this work, a cell-stack was fabricated on porous ceramic flattened tube supports using decalcomania paper, which consists of an anode, electrolyte, and a cathode. The anode layer was $40{\mu}m$ thick, and was porous. The electrolyte layers exhibited a uniform thickness of about $20{\mu}m$ with a dense structure. Interfacial adhesion was improved due to the dense structure. The cathode layers was $30{\mu}m$ thick with porous structure, good adhesion to the electrolyte. The ohmic resistance levels at 800, 750 and $700^{\circ}C$ were measured, showing values of 1.49, 1.58 and $1.65{\Omega}{\cdot}cm^2$, respectively. The polarization resistances at 800, 750 and $700^{\circ}C$ were measured to be 1.63, 2.61 and $4.17cm^2$, respectively. These lower resistance values originated from the excellent interfacial adhesion between the anode, electrolyte and cathode. In a two-cell-stack SOFC, open-circuit voltages(OCVs) of 1.915, 1.942 and 1.957 V and maximum power densities(MPD) of 289.9, 276.1 and $220.4mW/cm^2$ were measured at 800, 750 and $700^{\circ}C$, respectively. The proposed fabrication technique using decalcomania paper was shown to be feasible for the easy fabrication of segmented-in-series flattened tube SOFCs.

In-situ spectroscopic studies of SOFC cathode materials

  • 주종훈
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.70.1-70.1
    • /
    • 2012
  • In-situ X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy studies of SOFC cathode materials will be discussed in this presentation. The mixed conducting perovskites (ABO3) containing rare and alkaline earth metals on the A-site and a transition metal on the B-site are commonly used as cathodes for solid oxide fuel cells (SOFC). However, the details of the oxygen reduction reaction are still not clearly understood. The information about the type of adsorbed oxygen species and their concentration is important for a mechanistic understanding of the oxygen incorporation into these cathode materials. XPS has been widely used for the analysis of adsorbed species and surface structure. However, the conventional XPS experiments have the severe drawback to operate at room temperature and with the sample under ultrahigh vacuum (UHV) conditions, which is far from the relevant conditions of SOFC operation. The disadvantages of conventional XPS can be overcome to a large extent with a "high pressure" XPS setup installed at the BESSY II synchrotron. It allows sample depth profiling over 2 nm without sputtering by variation of the excitation energy, and most importantly measurements under a residual gas pressure in the mbar range. It is also well known that the catalytic activity for the oxygen reduction is very sensitive to their electrical conductivity and oxygen nonstoichiometry. Although the electrical conductivity of perovskite oxides has been intensively studied as a function of temperature or oxygen partial pressure (Po2), in-situ measurements of the conductivity of these materials in contact with the electrolyte as a SOFC configuration have little been reported. In order to measure the in-plane conductivity of an electrode film on the electrolyte, a substrate with high resistance is required for excluding the leakage current of the substrate. It is also hardly possible to measure the conductivity of cracked thin film by electrical methods. In this study, we report the electrical conductivity of perovskite $La_{0.6}Sr_{0.4}CoO_{3-{\delta}}$ (LSC) thin films on yttria-stabilized zirconia (YSZ) electrolyte quantitatively obtained by in-situ IR spectroscopy. This method enables a reliable measurement of the electronic conductivity of the electrodes as part of the SOFC configuration regardless of leakage current to the substrate and cracks in the film.

  • PDF

고체산화물 연료전지를 위한 플라즈마 용사코팅 Ni/YSZ 음극 복합체의 특성평가 (Characterization of Ni/YSZ Anode Coating for Solid Oxide Fuel Cells by Atmospheric Plasma Spray Method)

  • 박수동;윤상훈;강기철;이창희
    • Journal of Welding and Joining
    • /
    • 제26권4호
    • /
    • pp.50-54
    • /
    • 2008
  • In this research, anode for SOFC has been manufactured from two different kinds of feedstock materials through thermal spraying process and the properties of the coatings were characterized and compared. One kind of feedstock was manufactured from spray drying method which includes nano-components of NiO, YSZ (300 nm) and graphite. And the other is manufactured by blending the micron size NiO coated graphite, YSZ and graphite powders as feedstock materials. Microstructure, mechanical properties and electrical conductivity of the coatings as-sprayed, after oxidation and after hydrogen reduction containing nano composite which is prepared from spray-dried powders were evaluated and compared with the same properties of the coatings prepared from blended powder feedstock. The coatings prepared from the spray dried powders has better properties as they provide larger triple phase boundaries for hydrogen oxidation reaction and is expected to have lower polarization loss for SOFC anode applications than that of the coatings prepared from blended feedstock. A maximum electrical conductivity of 651 S/cm at $800^{\circ}C$ was achieved for the coatings from spray dried powders which much more than that of the average value.

졸-겔 코팅에 의한 저온형 고체산화물 연료저지용 전해질막의 합성 및 특성 (Synthesis of Electrolyte Films for Low-Temperature Solid Oxide Fuel Cells by Sol-Gel Coating and Their Characteristics)

  • 현상훈;김승구;장운석
    • 한국세라믹학회지
    • /
    • 제36권4호
    • /
    • pp.391-402
    • /
    • 1999
  • Characteristics of composite electrolytes which were prepared by coating a thin film of YSZ (yttria sta-bilized zirconia : (ZrO2)0.92 (Y2O3)0.08) on YDC (yttria doped ceria : Ce0.8Y0.2O1.9) with mixed conductivity have been investigated in order to develop the low-temperature solid oxide fuel cell. The thickness (t) of spin-coated YSZ thin films after the heat-treatment at 600$^{\circ}C$ was increased proportionally to the sol con-centrations (C) while the decrease in its thickness with the spin rate ($\omega$) could be expressed in the e-quation of ln t=9.49-0.53 ln $\omega$(0.99mol//s sol conc.) When the sol concentration and the spin rate being less than 0.99 mol/l and higher than 1000 rpm respectively reliable YSZ/YDC composite electrolytes could be obtained by multi-coating although several micro-cracks were observed in singly coated YSZ film surfaces. The dense YSZ film with a 1$\mu\textrm{m}$ thickness was prepared by coating of 0.99 mol/l YSZ sol five-times at 2000 rpm followed by heat-treatment at 1400$^{\circ}C$ for 2h, The adhesion between YSZ film and YDC substrate was found to be very good. The open circuit voltages of H2/O2 single cell with YSZ/YDC composite electrolytes were 0.79∼0.82 V at 800$^{\circ}C$ and 0.75∼0.77V at 900$^{\circ}C$ The open circuit voltage was inversely proportioned to the thickness ratio of YSZ thin film (1$\mu\textrm{m}$) to YDC substrate(0.28-2.22 mm)

  • PDF

전기영동법을 이용한 고체산화물 연료전지용 $Ce_{0.8}Sm_{0.2}O_{x}$ 전해질 박막 제조 (Preparation of $Ce_{0.8}Sm_{0.2}O_{x}$ Electrolyte Thin Film for Solid Oxide Fuel Cells by Electrophoretic Deposition)

  • 김동규;송민우;이경섭;김연수;김영순;신형식
    • Korean Chemical Engineering Research
    • /
    • 제49권6호
    • /
    • pp.781-785
    • /
    • 2011
  • 본 연구에서는 나노 크기의 세리아를 사마리움으로 일부 도핑(samaria-doped ceria(SDC))한 분말을 urea를 첨가제로 사용하여 수열합성법으로 합성하였으며 그 특성들을 XRD, FESEM, TEM 등을 통해 관찰하였다. 합성 시간 및 합성온도가 증가함에 따라 분말의 결정성 및 입도가 증가함을 확인하였다. 또한 이온전도도의 측정을 통해 합성된 SDC 파우더가 중 저온(600~$800^{\circ}C$) 부근에서 0.1 S/cm의 이온전도도를 보여 중 저온형 고체산화물 연료전지(IT-SOFC)의 고체 전해질에 적합함을 확인할 수 있었다. 합성된 SDC 분말은 중·저온 고체산화물 연료전지의 음극지지형 전해질로 사용하기 위해 전기영동 증착 방법을 이용하여 다공성 NiO-SDC 기판 위에 SDC 박막 증착을 시도하였다. 증착 용액은 acetone을 용매로 사용하고, 20V의 인가전압으로 10초간 증착한 결과 얇고 치밀하며 기공이 없는 SDC 박막이 형성되었음을 FESEM 분석을 통해 확인할 수 있었다.

전착법과 담금법에 의한 음극지지형 SOFC 지르코니아 전해질막 제조 (Preparation of Electrolyte Thin Film for Anode Support Type Solid Oxide Fuel Cells by Electrophoretic Deposition and Dip-Coating)

  • 김상우;이병호;손용배;송휴섭
    • 한국세라믹학회지
    • /
    • 제36권8호
    • /
    • pp.791-798
    • /
    • 1999
  • 다공성 NiO-YSZ 기판위에 전착법(EPD; Electrophoretic Deposition)법과 담금(Dip-coating)법에 의해 음극지지형 고체연료전지용 이트리아 안정화 지르코니아 박막 제조법을 연구하였다. 이를 위해 슬러리 농도 및 시간에 따른 박막의 무게, 박막의 결함 및 미세구조변화에 영향을 주는 제조조건들을 살펴 봄으로써 전착법과 담금법의 차이를 보았다. 담금법에서는 막생성 초기인 30초까지 막의 무게가 증가하지만 그 후에는 탈락이 일어나 시간을 증가하여도 막의 무게가 오히려 감소하였다. 전착법에서는 임계 인가전류 이상에서 시간에 따라 막의 무게가 증가하고 균일하고 치밀한 막이 형성하였다 전장이 매우 낮은 0.035 mA/$cm^2$ 의 정전류를 120초 이상 장시간 인가하면 막의 흘러내림(sagging)으로 인한 결함이 발생하였다. 전착법에 의해 균일하고도 치밀하게 가스 누출성이 없는 음극지지형 고체산화물 연료전지에 적합한 전해질 박막을 제조할 수 있었다.

  • PDF

La(Sr)Fe(Co)O3-δ 침지법을 이용한 양극 지지형 SOFC 제조 및 출력 특성 (Characterization and Fabrication of La(Sr)Fe(Co)O3-δ Infiltrated Cathode Support-Type Solid Oxide Fuel Cells)

  • 황국진;김민규;김한빛;신태호
    • 한국전기전자재료학회논문지
    • /
    • 제32권6호
    • /
    • pp.501-506
    • /
    • 2019
  • To overcome the limitations of the conventional Ni anode-supported SOFCs, various types of ceramic anodes have been studied. However, these ceramic anodes are difficult to commercialize because of their low cell performances and difficulty in manufacturing anode-support typed SOFCs. Therefore, in this study, to use these ceramic anodes and take advantage of anode-supported SOFC, which can minimize ohmic loss from the thin electrolyte, we fabricated cathode support-typed SOFC. The cathode-support of LSCF-YSZ was prepared by the acid treatment of conventional Ni-YSZ (Yttria-stabilized Zirconia) anode-support, followed by the infiltration of LSCF to YSZ scaffold. The composite of $La(Sr)Ti(Ni)O_3$ and $Ce(Mn,Fe)O_2$ was used as the ceramic anode. The fabricated cathode-supported button cell showed a relatively low power density of $0.207Wcm^{-2}$ at $850^{\circ}C$; however, it is expected to show better performance through the optimization of the infiltration rate and thickness of LSCF-YSZ cathode-support layer.