• Title/Summary/Keyword: solid lubricants

Search Result 114, Processing Time 0.025 seconds

Effects of Solid Lubricants on Microsteucture and Mechanical Proerties of Sintered Valve Seats for Automobile Engine (자동차 엔진용 소결 밸브시트의 미세조직과 기계적 성질에 미치는 고체윤활제의 영향)

  • 최재기
    • Journal of Powder Materials
    • /
    • v.6 no.2
    • /
    • pp.163-170
    • /
    • 1999
  • Engine valve seat is a functionally important part for maintaining engine performance. The progress of automotive technology has increased the severity of conditions to which it is exposed, especially as regards LPG fuel engines and turbocharger. Therefore, it requires excellent heat and wear resistance to meet the severe condition inside the engine. In the present study, effects of solid lubricants such as CaF$_2$, MnS and MoS$_2$ on microstructure and mechanical properties of sintered Fe alloys for valve srats have been investigated for the development of valve seat material with high temerature wear resistance. As a results of engine simulation test, 0.5 wt% CaF$_2$ specimen showed the most excellent property, but in the overall aspect of view valve recession has increased with increasing the amount of solid lubricants.

  • PDF

Tribological performance of some organic fluorine-containing compounds as lubricants

  • Liu, Weimin;Ye, Chengfeng;Xue, Qunji
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.349-350
    • /
    • 2002
  • The friction and wear behaviors of fluorine-containing compounds such as perfluoropolyethers (PFPE), phosphazenes (X-1P), ionic liquids as lubricants for steel/seel, steel/ceramic, ceramic/ceramic were investigated using a SRV tester and a one-way reciprocating friction tester both in ball-on-disc configuration. It was found that the three fluorine-containing lubricants could reduce friction coefficient and wear volume effectively. The effectiveness of the three lubricants in reducing wear volume could be ranked as ionic liquids>X-1P>PFPE. Tests also showed that aryloxyphosphazene with polar substituent as a lubricant of steel/steel pair gave low wear, while aryloxyphosphazene with nonpolar group on the phenyl pendant led to high wear. The morphology and the tribo-chemical reaction of the worn surfaces were analyzed with a scanning electron microscope (SEM) and X-ray photoelectron spectroscope (XPS). XPS analyses illustrated the formation of iron fluoride in steel/steel system with the lubrication of both phosphazenes and ionic liquids.

  • PDF

Performances of Plastic Pulley with High Mechanical Properties and Low Friction

  • Kim, Namil;Lee, Jung-Seok;Hwang, Byung-Kook;Bae, Seokhu;Yoon, Jeong-Hwan;Yun, Juho
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.135-141
    • /
    • 2019
  • Polyphenylene sulfide (PPS) was filled with glass fiber (GF), aramid fiber (AF), and solid lubricants to improve the mechanical properties and wear resistance. The addition of GF effectively enhanced the tensile strength, flexural modulus, and impact strength of PPS, while solid lubricants such as polytetrafluoroethylene (PTFE), molybdenum disulfide ($MoS_2$), and tungsten disulfide ($WS_2$) lowered the friction coefficients of the composites to below 0.3. The ball nut and motor pulley of the electric power steering (EPS) were manufactured using the PPS composites, and feasibility was ascertained thereafter by conducting the durability test. The composites filled with GF and AF showed high mechanical strength, but slip occurred at the interface between the pulley and belt while testing above $50^{\circ}C$. When small amounts of lubricants were added, the slip was no longer detected because of the suppression of friction heat. It is realized that the low friction as well as high mechanical properties is important to ensure the reliability of plastic pulleys.

An Experimental Study on Friction and Wear Characteristics of Air Curable $MoS_2$ Bonded Films with Polymeric Binder Materials (결합제 변화에 따른 상온 경화성 접착형 $MoS_2$ 고체윤활 피막의 마찰.마모 특성)

  • 한흥구;공호성;윤의성;권오관
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.72-78
    • /
    • 1998
  • In this work, the effects of binder materials on the tribological behavior were experimentally evaluated for air curable MoS$_2$bonded film lubricants. The binders tested were basically alkyd and acryl based resins, and also were modified by nitro-cellulose in various weight percentages. Effects on the binder ratio to solid lubricants and the molecular weight of binders were also investigated in all aspects of the tribological behavior. For the tests, LFW-1 and Falex tester were used to measure mainly the endurance life and load carrying capacity of bonded lubricants. Results showed that lubricants of methacrylic resin has the better performance than those of other resins, and also the properties of lubricants both of alkyd and acrylic resins could be improved by modification with nitro-cellulose. It was also shown that the optimum ratio of nitro-cellulose related closely to the binder material and the testing machine.

Evaluation of Tool Life for Forging Die due to Lubricants and Suface Treatments (단조 금형의 윤활, 표면처리 및 금형 수명 평가)

  • 김병민
    • Transactions of Materials Processing
    • /
    • v.11 no.3
    • /
    • pp.211-216
    • /
    • 2002
  • The mechanical and thermal load, and thermal softening occuring by the rush temperature of die, in warm and hot forging, cause wear, heat cracking and plastic deformation, etc. This paper describes the effects of solid lubricants and surface treatments for warm forging die. Because cooling effect and low friction are essential to the long life of dies, optimal surface treatments and lubricants are very important to hot and warm forging process. The main factors affecting die hardness and heat transfer, are surface treatments and lubricants, which are related to heat transfer coefficient, etc. To verify the effects, experiments are performed for heat transfer coefficient in various conditions - different initial billet temperatures and different loads. Carbonitriding and ionitriding are used as surface treatments, and oil-base and water-base graphite lubricants are used. The effects of lubricant and surface treatment for warm and hot forging die life are explained by their thermal characteristics, and the new developed technique in this study for predicting tool life can give more feasible means to improve the tool life in hot forging process.

Experimental Studies on Friction and Wear of the Solid Lubricating $MoS_2$ Bonded Films (고체윤활용 $MoS_2$Bonded Film의 마찰마모 특성에 관한 실험적 고찰)

  • 공호성;윤의성;한홍구;권오관
    • Tribology and Lubricants
    • /
    • v.12 no.1
    • /
    • pp.15-21
    • /
    • 1996
  • Friction and wear properties of MoS$_2$ bonded films were studied using the Falex testing machine, and their properties were evaluated in terms of the life and the load carrying capacity of the films. MoS$_2$ bonded films were formulated from the mixtures of MoS$_2$ solid particles and epoxyphenol resin, and they were applied onto AISI 4130 steel surface by dipping method to form lubricating bonded films. The results of the life and the load carrying capacity of the films showed that films were mainly affected by the surface temperature arisen from the frictional heat at the contact surface. To obtain enhanced tribological properties of the films, various combinations of solid lubricants and additives with a basic polymer resin were attempted and evaluated. The effects of surface pretreatment, such as sand blast or Zn-phosphating, were also investigated.

A Study of Friction Characteristics according to the Morphology of Solid Transfer Film (고체윤활막 형상에 따른 마찰특성의 변화에 관한 연구)

  • Lim, Hyun-Woo;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.310-317
    • /
    • 2000
  • Tribological properties of friction materials containing different volume ratios of solid lubricants (graphite and MoS$_2$) were studied using a pad-on-disk type friction tester. Morphology and thickness of the friction film were carefully examined to correlate the friction performance with the property of the friction film. Results showed that the friction materials containing 16vo1. % of graphite and 5 vol. % of MoS$_2$exhibited best friction stability among others. In particular, the thickness of the friction film decreased as the amount of MoS$_2$increased and severe friction oscillation was observed when the friction material contained MoS$_2$only (21 vol. %). Microscopic observations and friction tests suggested that the coherent thick transfer film improved the friction stability.

  • PDF

Stress Analysis of a Layered Semi-infinite Solid Subjected to Contact Loading Using a Fourier Integral (층이 있는 반무한체의 접촉하중에 의한 응력을 푸리에 적분을 이용한 해석)

  • 안유민;박상신
    • Tribology and Lubricants
    • /
    • v.17 no.5
    • /
    • pp.373-379
    • /
    • 2001
  • The problem of interest is formulating elastic contact problem of a layered semi-infinite solid in terms of Fourier integral. The plane strain problem is considered for a solid composed of homogeneous isotropic two layers with different mechanical properties. General solutions for the subsurface stress and deformation field of frictionless elastic bodies under normal loading using of Fourier transformation technique are obtained. The numerical results for the stress distribution of coated solid for some particular cases are given.

Studies on solid inflammable lubricants for refractory slates (내화물 슬레이트용 고체윤활제의 연구)

  • Rho, Seung-Baik;Lee, Haakil;Son, Ki Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2308-2313
    • /
    • 2015
  • In order to produce an optimal performance solid lubricant used in the refractory slates, various compositions of starch, graphite and water were evaluated by testing their viscosity, coefficient of friction and wear performance. At 15% starch content, the degree of viscosity increment rose in proportional to graphite content and the lowest coefficient of friction was observed when the graphite content was at 30 wt%. Our results demonstrate that, as the water content decrease, the ratio of solid content increases, which compromises the surface coating resulting in increase of coefficient of friction. The best wear test result was obtained when the starch content was at 15 wt% with graphite content at either 25 wt% or 30 wt%.

Tribological Properties of Carbon Nanotube Thin Films by using Electrodynamic Spraying Method (전기 분사 증착 방식을 이용한 탄소 나노 튜브 박막의 트라이볼로지적 특성에 관한 연구)

  • Kim, Chang-Lae;Kim, Dae-Eun;Kim, Hae-Jin
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.313-317
    • /
    • 2018
  • Carbon-based coatings, including carbon nanotubes (CNTs), graphene, and buckyball ($C_{60}$), receive much interest because of their outstanding mechanical and electrical properties for a wide range of electromechanical component-based applications. Previous experimental results demonstrate that these carbon-based coatings are promising solid lubricants because of their superior tribological properties, and thus help prolong the lifetime of silicon-based applications. In this study, CNT coatings are deposited on a bare silicon (100) substrate by electrodynamic spraying under different deposition conditions. During the coating deposition, the applied voltage, CNT concentration of the solution, distance between the injecting nozzle and the substrate and diameter of the injecting nozzle are optimized to control the thickness and surface roughness of the CNT coatings. The surface morphology and thickness of the coatings are characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. The friction and wear properties of the coatings are investigated by using a pin-on-reciprocating-type tribotester under various experimental conditions. The friction coefficient of the CNT coating is as low as 0.15 under high normal loads. The overall results reveal that CNT coatings deposited by electrodynamic spraying provide relatively uniform with superior lubrication performance.