• Title/Summary/Keyword: solid fermentation

Search Result 408, Processing Time 0.027 seconds

The Production of Xanthan from Brewer's Spent Grain

  • Rajiv Chetia;Bhriganka Bharadwaj;Rahul Dey;Biswa Prasun Chatterji
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.449-456
    • /
    • 2023
  • Sugar or dextrose increases the cost of production of xanthan gum by Xanthomonas campestris. Brewers' Spent Grain (BSG) was chosen as a source of fermentable sugars. BSG is a significant industrial by-product generated in large quantities from the breweries. Primarily used as animal feed due to its high fiber and protein content, BSG holds great potential as an economically and ecologically sustainable substrate for fermenting biomolecules. This study explores BSG's potential as a cost-effective carbon source for producing xanthan, utilizing Xanthomonas campestris NCIM 2961. An aqueous extract was prepared from BSG and inoculated with the bacterium under standard fermentation conditions. After fermentation, xanthan gum was purified using a standard protocol. The xanthan yield from BSG media was compared to that from MGYP media (control). The fermentation parameters, including pH, temperature, agitation and duration were optimized for maximum xanthan gum yield by varying them at different levels. Following fermentation, the xanthan gum was purified from the broth by alcoholic precipitation and then dried. The weight of the dried gum was measured. The obtained xanthan from BSG under standard conditions and commercial food-grade xanthan were characterized using FTIR. The highest xanthan yields were achieved at 32 ℃, pH 6.0, and 72 h of fermentation at 200 rpm using BSG media. The FTIR spectra of xanthan from BSG media closely resembled that of commercial food-grade xanthan. The results confirm the potential of BSG as a cost-effective alternative carbon source for xanthan production, thereby reducing production costs and solid waste.

The Influence of Kudzu Root Starch on the Growth and Metabolism of Baker's Yeast During Aerobic Semi-Solid Fermentation (반고상 발효에서의 빵 효모 증식과 신진대사에 대한 갈근 전분의 영향)

  • 박돈희;선우창신;로버트디태너;죠지밀러니
    • Korean Journal of Microbiology
    • /
    • v.24 no.4
    • /
    • pp.385-388
    • /
    • 1986
  • In a study of the aerobic growth of Baker's yeast (Saccharomyces cerevisiae) on Maxon-Johnson medium (with glucose as substrate) solidified with kudzu root starch, it was observed that between 8 and 24 hour incubation. 10 and 12% solids stimulated greater cell production than did 6 and 8% solids. The concentration of solids also affected thd secretion of protein from the yeast cells with the highest content of extracellular protein at 10-24 hour incubation stimulated by 10% starch solids.

  • PDF

STUDIES IN FIBRE DIGESTION AND PASSAGE RATE OF LIQUID AND SOLID IN CATTLE AND BUFFALOES

  • Abdullah, N.;Ho, Y.W.;Mahyuddin, M.;Jalaludin, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.4 no.2
    • /
    • pp.137-141
    • /
    • 1991
  • Rumen liquor characteristics and disappearance rate of dry matter were studied in Kedah-Kelantan cattle and swamp buffaloes fed grass of rice straw-based diet. Cobalt-EDTA and chromium mordented fibres prepared from the faecal material were used to determine the liquid and solid particles movement in both animal species fed with rice straw. Swamp buffaloes showed a more intense rumen fermentation activity than Kedah-Kelantan cattle when both species were fed straw-based diet. The buffaloes also demonstrated faster rates of grass and straw degradation in situ. The fluid outflow rate from the rumen of buffalo ($1.06{\pm}0.19l/h$) was observed to be slower than that of cattle ($1.55{\pm}0.01l/h$). No significant differences between cattle and buffaloes were observed in rumen fluid volume and passage rate of small particles from the rumen.

Production, Isolation, and Purification of L-Asparaginase from Pseudomonas Aeruginosa 50071 Using Solid-state Fermentation

  • El-Bessoumy, Ashraf A.;Sarhan, Mohamed;Mansour, Jehan
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.387-393
    • /
    • 2004
  • The L-asparaginase (E. C. 3. 5. 1. 1) enzyme was purified to homogeneity from Pseudomonas aeruginosa 50071 cells that were grown on solid-state fermentation. Different purification steps (including ammonium sulfate fractionation followed by separation on Sephadex G-100 gel filtration and CM-Sephadex C50) were applied to the crude culture filtrate to obtain a pure enzyme preparation. The enzyme was purified 106-fold and showed a final specific activity of 1900 IU/mg with a 43% yield. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the purified enzyme revealed it was one peptide chain with $M_r$ of 160 kDa. A Lineweaver-Burk analysis showed a $K_m$ value of 0.147 mM and $V_{max}$ of 35.7 IU. The enzyme showed maximum activity at pH 9 when incubated at $37^{\circ}C$ for 30 min. The amino acid composition of the purified enzyme was also determined.

Physicochemical Properties and Antioxidative Activity of Fermented Rhodiola sachalinensis and Korean Red Ginseng Mixture by Lactobacillus acidophilus (Lactobacillus acidophilus을 이용한 홍경천과 홍삼 혼합 발효물의 이화학적 특성 및 항산화 활성)

  • Sung, Su-Kyung;Rhee, Young-Kyung;Cho, Chang-Won;Kim, Young-Chan;Lee, OK-Hwan;Hong, Hee-Do
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.3
    • /
    • pp.358-365
    • /
    • 2013
  • The study was conducted to investigate the condition for mixed fermentation of Rhodilola sachalinensis with red ginseng using Lactobacillus acidophillus 128 and the changes of physicochemical properties and antioxidant activities before and after the lactic acid fermentation was examined. In the single fermentation of Rhodiola sachalinensis extract, the pH and titratable acidity rarely changed, and the number of lactic acid bacteria decreased greatly. On the other hand, in the lactic acid fermentation of Rhodiola sachalinensis-red ginseng mixed extract of 50% red ginseng content, the pH decreased, whereas the titratable acidity and the number of lactic acid bacteria increased. The solid content of optimal mixed extract for lactic acid fermentation was 0.5%. Sugar content decreased during fermentation, but total phenolic compounds tended to increase during fermentation. The salidroside and p-tyrosol content of the initial Rhodiola sachalinensis-red ginseng mixed extract was 419.5 mg% and 60.1 mg%, respectively; after fermentation, the salidroside content after lactic acid fermentation decreased greatly to 81.8 mg%, and the amount of p-tyrosol increased greatly to 324.9 mg%. The DPPH scavenging activity of Rhodiola sachalinensis-red ginseng mixed fermentate was 78.1% at 0.1% concentration, showing a tendency to increase as compared to 50.3% of Rhodiola sachalinensis-red ginseng mixed extract before the fermentation (p<0.05); it was a higher antioxidant activity as compared to the single fermentation of Rhodiola sachalinensis or red ginseng.

Effect of Solid-State Fermented Brown Rice Extracts on 3T3-L1 Adipocyte Differentiation

  • Su Bin Ji;Chae Hun Ra
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.926-933
    • /
    • 2023
  • Aspergillus oryzae KCCM 11372 was used to enhance the production of β-glucan using humidity control strategies. Under conditions of 60% humidity, solid-state fermentation (SSF) increased the yields of enzymes (amylase and protease), fungal biomass (ergosterol), and β-glucan. The maximum concentrations obtained were 14800.58 U/g at 72 h, 1068.14 U/g at 120 h, 1.42 mg/g at 72 h, and 12.0% (w/w) at 72 h, respectively. Moreover, the β-glucan containing fermented brown rice (β-glucan-FBR) extracts at concentrations of 25-300 ㎍/ml was considered noncytotoxic to 3T3-L1 preadipocytes. We then studied the inhibitory effects of the extracts on fat droplet formation in 3T3-L1 cells. As a result, 300 ㎍/ml of β-glucan-FBR extracts showed a high inhibition of 38.88% in lipid accumulation. Further, these extracts inhibited adipogenesis in the 3T3-L1 adipocytes by decreasing the expression of C/EBPα, PPARγ, aP2, and GLUT4 genes.

Physical Properties of Korean Earthenware Containers Affected by Soy Sauce Fermentation Use

  • Seo, Gyeong-Hee;Yun, Jung-Hyun;Chung, Sun-Kyung;Park, Woo-Po;Lee, Dong-Sun
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.168-172
    • /
    • 2006
  • Soy sauce was fermented at $20^{\circ}C$ for 100 days in onggi containers (ethnic Korean earthenware) which had been fabricated using three different glazing treatments: unglazed, glazed only on the outside, and glazed on both surfaces. The changes in microstructure and permeability characteristics of onggi containers were examined after fermentation of soy sauce. The effect of repeated use of onggi containers on the fermentation was analyzed by the contact between an aqueous model solution and the onggi containers used once for soy sauce fermentation. The levels of reducing sugar and free amino acids produced from the dissolved starch and protein, respectively, in the solution were compared between the new and reused onggi containers. The moisture permeance and gas permeabilities of the onggi jars were progressively reduced with continuing use for soy sauce fermentation, probably due to clogging of micropores by solid materials. After having been used once for fermentation, the microbial cells and/or enzymes immobilized on the surface or in the micropores of the onggi containers seemed to contribute to accelerating the hydrolytic reactions of starch and protein.

Effect of Different Pretreatment Methods on the Bioconversion of Rice Bran into Ethanol

  • Eyini, M.;Rajapandy, V.;Parani, K.;Lee, Min-Woong
    • Mycobiology
    • /
    • v.32 no.4
    • /
    • pp.170-172
    • /
    • 2004
  • The efficiency of acid, enzyme and microbial pretreatment of rice bran was compared based on the content of cellulose, hemicellulose, reducing sugars and xylose in the substrate. An isolate of Aspergillus niger or a strain of Trichoderma viride(MTCC 800) was employed for microbial pretreatment of rice bran in solid state. Acid pretreatment resulted in the highest amount of reducing sugars followed by enzyme and microbial pretreatment. A. niger showed a higher rate of hydrolysis than T. viride. The rice bran hydrolysate obtained from the different methods was subsequently fermented to ethanol either by Zymomonas mobilis(NCIM 806) or by Pichia stipitis(NCIM 3497). P. stipitis fermentation resulted in higher ethanol(37% higher) and biomass production($76{\sim}83%$ higher) than those of Z. mobilis. Maximum ethanol production resulted at 12h in Zymomonas fermentation, while in Pichia fermentation, it was observed at 60h. Microbial pretreatment of rice bran by A. niger followed by fermentation employing P. stipitis was more efficient but slower than the other microbial pretreatment and fermentation.