• Title/Summary/Keyword: solid electrolyte

Search Result 695, Processing Time 0.029 seconds

Ion Conduction Properties of PMMA/PVDF based Polymer Electrolyte for Lithium Polymer Battery (리튬 폴리머전지용 PMMA/PVDF계 고분자 전해질의 이온 전도 특성)

  • 이재안;김종욱;구할본;이헌수;손명모
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.347-350
    • /
    • 2000
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li polymer battery. The temperature dependence of conductivity, impedance spectroscopy and electrochemical properties of PMMA/PVDF electrolytes as a function of a mixed ratio were reported for PMMA/PVDF based polymer electrolyte films, which were prepared by thermal gellification method of preweighed PMMA/PVDF, plasticizer and Li salt. The ion conductivity of PMMA/PVDF electrolytes was 10$\^$-3/S/cm, which may be applicable to a constituent of lithium secondary battery. 5PMMA20PVDFLiC1O$_4$PC$\sub$8/EC$\sub$8/ electrolyte remains stable up to 5V vs. Li/Li$\^$+/. Steady state current method and AC impedance were used for the determination of transference numbers in PMMA/PVDF electrolyte film. The transference number of 5PMMA20PVDFLiC1O$_4$PC$\sub$8/EC$\sub$8/ electrolyte is 0.55.

  • PDF

Solid-state Supramolecular polymer electrolytes containing double hydrogen bonding sites for high efficiency dye-sensitized solar cells(DSSCs) (초분자 고체전해질을 이용한 고효율 염료감응형 태양전지)

  • Kim, Sun-Young;Jeon, La-Sun;Lee, Yong-Gun;Kang, Yong-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.309-311
    • /
    • 2007
  • Supramolecules containing double hydrogen bonding sites at their both chain ends were self-polymerized to become solid state polymer and were utilized to improve the efficiency of solid state DSSCs. Hydrogen bonding sites were attached at the chain ends of PEG of Mw=2000, such as pyrimethamine and glutaric acid. The solar cell with the solid state supramolecular polymer electrolyte resulted in the overall energy conversion efficiency of 4.63 % with a short circuit current density $(J_{sc})$ of 10.41 $mAcm^{-2}$, an open circuit voltage $V_{oc}$, of 0.71 V and a fill factor (FF) of 0.62 at one sun condition ([oligomer]:[1-methyl-3-propyl imidazolium iodide (MPII)]:$[I_2]$ = 20 : 1 : 0.19, active area = 0.16 $cm^2$, $TiO_2$ layer thickness = 10 ${\mu}m$). The ionic conductivity of the sol id state electrolyte was $5.11{\times}10^{-4}$ (S/cm). The cell performance was characterized by electrochemical impedance spectroscopy and ionic conductivity.

  • PDF

Solid-State $CO_2$ Sensor using ${Li_2}{CO_3}-{Li_3}{PO_4}-{Al_2}{O_3}$ Solid Electrolyte and ${LiMn_2}{O_4}$ as Reference Electrode (${Li_2}{CO_3}-{Li_3}{PO_4}-{Al_2}{O_3}$계의 고체 전해질 및 ${LiMn_2}{O_4}$의 기준전극을 사용한 $CO_2$ 가스센서)

  • 김동현;윤지영;박희찬;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.817-823
    • /
    • 2000
  • A solid-state electrochemicall cell for sensing CO2 gas was fabricated using a solid electrolyte of Li2CO3-Li3PO4-Al2O3 mixture and a reference electrode of LiMn2O4. The e.m.f. (electromotive force) of sensor showed a good accordance with theoretical Nernst slope (n=2) for CO2 gas concentration range of 100-10000 ppm above 35$0^{\circ}C$. The e.m.f. of sensor was constant regardless of oxygen partial pressure at the high temperature above 0.1 atm. It was, however, a little depended on oxygen partial pressure as the pressure decreased below 0.1 atm. The oxygen-dependency of our sensor gradually disappeared as the operating temperature increased. The sensing behavior of our CO2 sensor was affected by the presence of water vapor, but its effect was small comparing with other sensors.

  • PDF

Development of Accelerated Life Tests for Solid Aluminum Electrolyte Capacitor Made by Domestic Manufacturing Company and Comparison of Characteristics between Domestic Products and Foreign Advanced Products (국산 고체 알루미늄 전해 커패시터의 가속수명시험 개발 및 국외 선진업체 제품과의 특성 비교)

  • 박정원;이중휘
    • Journal of Applied Reliability
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 2002
  • High temperature operating test, temperature humidity test and temperature cycling were performed at various test levels for solid aluminum electrolyte capacitors made by domestic manufacturing company and foreign advanced manufacturing company. It was found that main failure mode of solid aluminum electrolyte capacitors was the decrease of their capacitances. The decrease of their capacitances has the same pattern in these tests. Test result for comparison of characteristics between domestic products and foreign advanced products shows that domestic products have the shorter lifetime and their capacitances decrease more rapidly in high temperature operating test and temperature humidity test. Also in these tests, accelerated tests for high temperature operating test and temperature humidity test were developed.

  • PDF

Enhanced Electrochemical Reactivity at Electrolyte/electrode Interfaces of Solid Oxide Fuel Cells with Ag Grids

  • Choi, Mingi;Hwang, Sangyeon;Byun, Doyoung;Lee, Wonyoung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.356-360
    • /
    • 2015
  • The specific role of current collectors was investigated at the electrolyte/electrode interface of solid oxide fuel cells (SOFCs). Ag grids were fabricated as current collectors using electrohydrodynamic (EHD) jet printing for precise control of the grid geometry. The Ag grids reduced both the ohmic and polarization resistances as the pitch of the Ag grids decreased from $400{\mu}m$ to $100{\mu}m$. The effective electron distribution along the Ag grids improved the charge transport and transfer at the interface, extending the active reaction sites. Our results demonstrate the applicability of EHD jet printing to the fabrication of efficient current collectors for performance enhancement of SOFCs.

Solution-based fabrication of germanium sulphide doped with or without Li ions for solid electrolyte applications

  • Jin, Byeong Kyou;Cho, Yun Gu;Shin, Dong Wook;Choi, Yong Gyu
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.110-113
    • /
    • 2012
  • Ge-S and Li-Ge-S powders were synthesized via solution-based process in order to employ chalcogenide-based solid electrolyte for use in Li secondary batteries. GeCl4 and thioacetamide in combination result in Ge-S powders of which major crystalline phase becomes GeS2 where the tetragonal and orthorhombic phases coexist after heat treatment. A chemical treatment using NaOH brings about the reduction of chlorine in the powders obtained. However, the heat treatment at 300 ℃ is more effective in minimizing the chlorine content. When lithium chloride is used as the precursor of Li ions, the LiCl powders are agglomerated with an inhomogeneous distribution. When Li2S is used, the Li-Ge-S powders are distributed more uniformly and the orthorhombic GeS2 phase dominates in the powders.

Development of Metal Substrate with Multi-Stage Nano-Hole Array for Low Temperature Solid Oxide Fuel Cell (저온 고체산화물연료전지 구현을 위한 다층 나노기공성 금속기판의 제조)

  • Kang, Sangkyun;Park, Yong-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.865-871
    • /
    • 2005
  • Submicron thick solid electrolyte membrane is essential to the implementation of low temperature solid oxide fuel cell, and, therefore, development of new electrode structures is necessary for the submicron thick solid electrolyte deposition while providing functions as current collector and fuel transport channel. In this research, a nickel membrane with multi-stage nano hole array has been produced via modified two step replication process. The obtained membrane has practical size of 12mm diameter and $50{\mu}m$ thickness. The multi-stage nature provides 20nm pores on one side and 200nm on the other side. The 20nm side provides catalyst layer and $30\~40\%$ planar porosity was measured. The successful deposition of submicron thick yttria stabilized zirconia membrane on the substrate shows the possibility of achieving a low temperature solid oxide fuel cell.

Challenges and Improvements of All-Solid-State Batteries

  • Jihyun Jang
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.3
    • /
    • pp.165-174
    • /
    • 2023
  • The development of all-solid-state batteries (ASSBs) has been gaining attention in recent years due to their potential to offer higher energy densities, improved safety, and longer cycle life compared to conventional lithium-ion batteries. However, several challenges must be addressed to achieve the practical application of ASSBs, such as the development of high-performance solid-state electrolytes, stable electrode-electrolyte interfaces, and cost-effective manufacturing processes. In this review paper, we present an overview of the current state of ASSB research, including recent progress in solid-state electrolyte and cathode/anode materials, and cell architecture. We also summarize the recent advancements and highlight the remaining challenges in ASSB research, with an outlook on the future of this promising technology.

Synthesis of Starch-g-PAN Polymer Electrolyte Membrane and Its Application to Flexible Solid Supercapacitors (Starch-g-PAN 고분자 전해질막 합성 및 플렉서블 고체 슈퍼 캐퍼시터 응용)

  • Min, Hyo Jun;Jung, Joo Hwan;Kang, Miso;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.164-172
    • /
    • 2019
  • In this work, we demonstrate a facile process to prepare an electrolyte membrane for the supercapacitor based on a graft copolymer consisting of starch and poly(acrylonitrile) (PAN). The graft copolymer (starch-g-PAN) was synthesized via free radical polymerization initiated by ceric ions. The starch-g-PAN was dissolved in ionic liquid, i.e. 1-ethyl-3-methylimidazolium dicyanamide (EMIM DCA) without any organic solvents at room temperature. The gelation of polymer electrolyte membranes occurred by applying high temperature, i.e. $100^{\circ}C$ for 1 hour. The resultant electrolyte membrane was flexible and thus applied to flexible solid supercapacitors. The performance of the supercapacitor based on starch-g-PAN graft copolymer electrolyte reached 21 F/g at a current density of 0.5 A/g. The cell also showed high cyclic stability with 86% of retention rate within 10,000 cycles. The preparation of starch-g-PAN based polymer electrolyte membrane provides opportunities for facile fabrication of flexible solid supercapacitors with good performance.

Fabrication of Solid Oxide Fuel Cells with Electron Beam Physical Vapor Deposition: I. Preparation of Thin Electrolyte Film of YSZ (전자빔 물리증착을 이용한 고체 산화물 연료전지의 제조 : I. YSZ 박막 전해질의 제조)

  • Kim, Hyoungchul;Koo, Myeong-Seo;Park, Jong-Ku;Jung, Hwa-Young;Kim, Joosun;Lee, Hae-Weon;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.2 s.285
    • /
    • pp.85-91
    • /
    • 2006
  • Electron Beam Physical Vapor Deposition (EB-PVD) was applied to fabricate a thin film YSZ electrolyte with large area on the porous NiO-YSZ anode substrate. Microstructural and thermal stability of the as-deposited electrolyte film was investigated via SEM and XRD analysis. In order to obtain an optimized YSZ film with high stability, both temperature and surface roughness of substrate were varied. A structurally homogeneous YSZ film with large area of $12\times12\;cm^2$ and high thermal stability up to $900^{\circ}C$ was fabricated at the substrate temperature of $T_s/T_m$ higher than 0.4. The smoother surface was proved to give the better film quality. Precise control of heating and cooling rate of the anode substrate was necessary to obtain a very dense YSZ electrolyte with high thermal stability, which affords to survive after post heat treatment for fabrication a cathode layer on it as well as after long time operation of solid oxide fuel cell at high temperature.