• Title/Summary/Keyword: solid cylinder

Search Result 197, Processing Time 0.037 seconds

Boundary Element Analysis of Interference Effect Due to Scattering in Microphone Measurement (마이크로폰 측정 시 발생하는 산란파 간섭에 대한 경계요소 해석)

  • Jeon, In-Youl;Kang, Sung-Chon;Ih, Jeong-Guon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.726-730
    • /
    • 2000
  • In this article, the scattering effect around a microphone is studied by using boundary element method, because it is hard to find the scattering experimentally. The scattering problem is defined by impinging an obstacle, i.e. a solid cylinder, with an incident plane wave. From this analysis, the scattering is numerically calculated by varying the microphone shape, the incident angle and the distance between microphones. It is found that the scattering effect of a microphone increases as the frequency increases and is not considerable in the low frequency region. However, it is noted that there might be the pressure distortion above 4 kHz due to the scattering in microphone measurement.

  • PDF

FORMULATION OF NEAR AND FAR ACOUSTIC FIELD FROM AN INCOMPRESSIBLE FLOW FLRCTUATION AROUND THE RIGID WALL

  • Ryu, Ki-Wahn;Lee, Duck-Joo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1996.06a
    • /
    • pp.59-62
    • /
    • 1996
  • A numerical study of a two-dimensional acoustic field is carride ort for a spinning vortex pair located neat a wall to investigate the effect of the wall from the spinning quadrupole source in unsteady vortical flows. Based on the known incompressible flow field, the perturbed compressible acoustic terms derived from the Euler equations are calculated. Non-reflecting boundary conditions on the free field and the solid boundary conditions are developed for a generalized curvilinear coordinates system to investigate the effect of a curced wall. It is concluded that the sound generated by the quadrupole sources of unsteady vortical flows in the presence of a flat wall or a circular cylinder can be calculated by using the source terms of hydrodynamic flow fluctuations in both near and far acoustic fields simultaneously.

  • PDF

Enrichment of $CO_2$-Fixing Bacteria in Cylinder-Type Electrochemical Bioreactor with Built-In Anode Compartment

  • Jeon, Bo-Young;Jung, Il-Lae;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.590-598
    • /
    • 2011
  • Bacterial assimilation of $CO_2$ into stable biomolecules using electrochemical reducing power may be an effective method to reduce atmospheric $CO_2$ without fossil fuel combustion. For the enrichment of the $CO_2$-fixing bacteria using electrochemical reducing power as an energy source, a cylinder-type electrochemical bioreactor with a built-in anode compartment was developed. A graphite felt cathode modified with neutral red (NR-graphite cathode) was used as a solid electron mediator to induce bacterial cells to fix $CO_2$ using electrochemical reducing power. Bacterial $CO_2$ consumption was calculated based on the variation in the ratio of $CO_2$ to $N_2$ in the gas reservoir. $CO_2$ consumed by the bacteria grown in the electrochemical bioreactor (2,000 ml) reached a maximum of approximately 1,500 ml per week. Time-coursed variations in the bacterial community grown with the electrochemical reducing power and $CO_2$ in the mineral-based medium were analyzed via temperature gradient gel electrophoresis (TGGE) of the 16S rDNA variable region. Some of the bacterial community constituents noted at the initial time disappeared completely, but some of them observed as DNA signs at the initial time were clearly enriched in the electrochemical bioreactor during 24 weeks of incubation. Finally, Alcaligenes sp. and Achromobacter sp., which are capable of autotrophically fixing $CO_2$, were enriched to major constituents of the bacterial community in the electrochemical bioreactor.

Separation Performance of a Low-pressure Hydrocyclone for Suspended Solids in a Recirculating Aquaculture System

  • Lee, Jin-Hwan
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.150-156
    • /
    • 2010
  • The separation performance of a low-pressure hydrocyclone (LPH) was evaluated for suspended-solids removal in a recirculating aquaculture system (RAS). The dimensions of the LPH were 335 mm cylinder diameter, 575 mm cylinder height, 60 mm overflow diameter, 50 mm underflow diameter, and $68^{\circ}$ cone angle. The inflow rate varied (400, 600, 800, and 1,000 mL $s^{-1}$) with 25%, 25%, 20%, and 10% of bypass ($R_f$), respectively. The maximum total separation efficiency (Et) and reduced separation efficiency (E't) for suspended solids from the effluent of the second settlement tank (before biofiltration) were 58.9% and 45.2%, respectively, at an inflow rate of 600 mL $s^{-1}$ and 25% of $R_f$. The maximum Et and E't for suspended solids from the water supply channel (after biofiltration) were 24.4% and 16%, respectively, at an inflow rate of 1,000 mL $s^{-1}$ and 10% of $R_f$. The maximum grade efficiency (Ei) was 51.6% for a 300 ${\mu}m$ particle size at an inflow rate of 600 mL $s^{-1}$ with 23% of $R_f$. The maximum reduced grade efficiency (E'i) was 37.6% for a 300 ${\mu}m$ particle size at an inflow rate of 1,000 mL $s^{-1}$ with 11% of $R_f$. The results indicate that the separation performance of the LPH for suspended solids removal was size selective and that maximum removal occurred at particle sizes ranging from 300 to 500 ${\mu}m$.

On the Vorticity and Pressure Boundary Conditions for Viscous Incompressible Flows (비압축성 점성유동의 와도와 압력 경계조건)

  • Suh J.-C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.15-28
    • /
    • 1998
  • As an alternative for solving the incompressible Navier-Stokes equations, we present a vorticity-based integro-differential formulation for vorticity, velocity and pressure variables. One of the most difficult problems encountered in the vorticity-based methods is the introduction of the proper value-value of vorticity or vorticity flux at the solid surface. A practical computational technique toward solving this problem is presented in connection with the coupling between the vorticity and the pressure boundary conditions. Numerical schemes based on an iterative procedure are employed to solve the governing equations with the boundary conditions for the three variables. A finite volume method is implemented to integrate the vorticity transport equation with the dynamic vorticity boundary condition . The velocity field is obtained by using the Biot-Savart integral derived from the mathematical vector identity. Green's scalar identity is used to solve the total pressure in an integral approach similar to the surface panel methods which have been well-established for potential flow analysis. The calculated results with the present mettled for two test problems are compared with data from the literature in order for its validation. The first test problem is one for the two-dimensional square cavity flow driven by shear on the top lid. Two cases are considered here: (i) one driven both by the specified non-uniform shear on the top lid and by the specified body forces acting through the cavity region, for which we find the exact solution, and (ii) one of the classical type (i.e., driven only by uniform shear). Secondly, the present mettled is applied to deal with the early development of the flow around an impulsively started circular cylinder.

  • PDF

Computation of Aeolian Tones from Twin-Cylinders Using Immersed Surface Dipole Sources

  • Cheong, Cheol-Ung;Ryu, Je-Wook;Lee, Soo-Gab
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2292-2314
    • /
    • 2006
  • Efficient numerical method is developed for the prediction of aerodynamic noise generation and propagation in low Mach number flows such as aeolian tone noise. The proposed numerical method is based on acoustic/viscous splitting techniques of which acoustic solvers use simplified linearised Euler equations, full linearised Euler equations and nonlinear perturbation equations as acoustic governing equations. All of acoustic equations are forced with immersed surface dipole model which is developed for the efficient computation of aerodynamic noise generation and propagation in low Mach number flows in which dipole source, originating from unsteady pressure fluctuation on a solid surface, is known to be more efficient than quadrupole sources. Multi-scale overset grid technique is also utilized to resolve the complex geometries. Initially, aeolian tone from single cylinder is considered to examine the effects that the immersed surface dipole models combined with the different acoustic governing equations have on the overall accuracy of the method. Then, the current numerical method is applied to the simulation of the aeolian tones from twin cylinders aligned perpendicularly to the mean flow and separated 3 diameters between their centers. In this configuration, symmetric vortices are shed from twin cylinders, which leads to the anti-phase of the lift dipoles and the in-phase of the drag dipoles. Due to these phase differences, the directivity of the fluctuating pressure from the lift dipoles shows the comparable magnitude with that from the drag dipoles at 10 diameters apart from the origin. However, the directivity at 100 diameters shows that the lift-dipole originated noise has larger magnitude than, but still comparable to, that of the drag-dipole one. Comparison of the numerical results with and without mean flow effects on the acoustic wave emphasizes the effects of the sheared background flows around the cylinders on the propagating acoustic waves, which is not generally considered by the classic acoustic analogy methods. Through the comparison of the results using the immersed surface dipole models with those using point sources, it is demonstrated that the current methods can allow for the complex interactions between the acoustic wave and the solid wall and the effects of the mean flow on the acoustic waves.

A Study on the Compressive Capacity of Yellow Poplar Skin-timber (백합나무 스킨팀버의 압축 성능에 관한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.333-343
    • /
    • 2011
  • The yellow poplar is an appropriate species for the age of low carbon green growth, because its absorption rates of ozone is greatly excellent, and also the absorption rates of carbon dioxide causing climate changes is very remarkable. The yellow poplar, which is a kind of rapid growth tree, shows a lack of performance as a structural member, however, it is suitable to use a variety of purposes like furniture materials, interior materials, plywood materials, and so on. In this study, the structural size skin-timbers were made by using the yellow poplar, and the compressive capacity was evaluated, also the numerical model was developed for the various uses. The rectangular shape skin-timber presented a good performance by showing 56.3% residual strength about the solid material. In case of the cylinder shape skin-timber showed a possibility to use diversely as a furniture material, as well as a structural uses, because almost 50% compressive capacity of material even though its residual area rates was 25%. Both rectangular shape and the cylinder shape represented that 'Brooming or end rolling' were the major failure mode, and partly splitting failure mode. The compressive capacity of the rectangular shape which residual area rates was large was higher than the cylinder shape, but it did not show statistical significance about the compressive capacity between them. Thus, it will be possible to use them mixed for a convenience of users. The result of the numerical analysis model was quite similar to actual test of the compressive capacity. Therefore, the yellow poplar can be utilized in the development of various uses by applying numerical analysis model about a variety of shapes and dimensions.

Study on Evaluation Method of Flow Characteristics in Steady Flow Bench(3) - Velocity Profile(1) (정상유동 장치에서 유동 특성 평가 방법에 대한 연구(3) - 유속분포(1))

  • Park, Chanjun;Sung, Jaeyong;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.169-182
    • /
    • 2016
  • This paper is the third investigation on the evaluation methods of flow characteristics in a steady flow bench. In the previous works, several assumptions used in the steady flow bench were examined and the flow characteristics were estimated both by the conventional impulse swirl meter and a particle image velocimetry at 1.75B position. From these works, it was concluded that the assumption of the solid rotation might cause serious problems and both of the eccentricity and the velocity profile distort the flow characteristics when using the ISM at 1.75B plane. Therefore, the understanding of the detail velocity profiles is very important to keep discussing the issues about the steady flow evaluation method. For this purpose, the planar velocity profiles were measure at 1.75B position by particle image velocimetry and the characteristics were examined according to the valve angles and lifts. The results show that the planar velocity profiles of 11, 16, $21^{\circ}$ valve angle heads according to the lift are similar to each other, however, that of $26^{\circ}$ angle is an exceptional case in the all aspects. In addition, the swirl behaviors are not apparent up to 6~8 mm lift under the $21^{\circ}$ angle and somewhat arranged motions are observed over the whole plane near the highest lift. At this point, the narrower the angle, the lower the lift at which the swirl motions become clear. On the other hands, when the angle is $26^{\circ}$, the center of swirl is always farthest from the cylinder center and only the indistinct swirl is observed even if at the highest lift. Also, all the swirl centers are quite apart from the cylinder center so that the effect of eccentricity may not be negligible at 1.75B regardless the valve angle. Related to the tangential velocity along with the radial direction, the bands of the velocity distribution are very wide and the mean velocities of cylinder center basis are lower than the velocity which is assumed in the ISM evaluation. Lastly, the mean tangential velocity profiles of swirl center basis are sometimes higher than that of ISM-assumed up to 0.6 non-dimensional distance less than 6mm lift, however, as the lift increases the profiles are different according to the angles and profile $11^{\circ}$ is the most closed to the ideal profile. Consequently, the real velocity profile is far from the assumption of ISM evaluation.

Accurate Free Vibration Analysis of Launcher Structures Using Refined 1D Models

  • Carrera, Erasmo;Zappino, Enrico;Cavallo, Tommaso
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.206-222
    • /
    • 2015
  • This work uses different finite element approaches to the free vibration analysis of reinforced shell structures, and a simplified model of a typical launcher with two boosters is used as an example. The results obtained using a refined one-dimensional (1D) beam model are compared to those obtained with commercial finite element software. The 1D models that are used in the present work are based on the Carrera Unified Formulation (CUF), which assumes a variable kinematic displacement field over the cross-sections of the beam. Two different sets of polynomials that correspond to Taylor (TE) or Lagrange (LE) expansions were used. The analyses focused on three reinforced structures: a stiffened panel, a reinforced cylinder and the complete structure of the launcher. The frequencies and natural modes obtained using one-dimensional models are compared to those obtained from classical finite element analysis. The classical FE models were built using a beam-shell or solid elements, and the results indicate that the refined beam models can in fact be used to investigate the behavior of very complex reinforced structures. These models can predict the shell-like modes that are typical of thin-walled structures that cannot be detected using classical beam models. The refined 1D models used in the present work provide results that are as accurate as those from solid FE models, but the 1D models have a much lower computational cost.

Freeze Drying for Porous Mo with Sublimable Vehicles of Eutectic System (공정 계 동결제 슬러리의 동결건조 공정에 의한 Mo 다공체 제조)

  • Lee, Gyu-Tae;Seo, Han Gil;Suk, Myung-Jin;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.253-257
    • /
    • 2013
  • Freeze drying for porous Mo was accomplished by using $MoO_3$ powder as the source and camphor-naphthalene eutectic system as the sublimable material. Eutectic composition of camphor-naphthalene slurries with the initial $MoO_3$ content of 5 vol%, prepared by milling at $55^{\circ}C$ with a small amount of oligomeric dispersant, was frozen at $-25^{\circ}C$. The addition of dispersant showed improvement of dispersion stability in slurries. Pores were generated subsequently by sublimation of the camphor-naphthalene during drying in air for 48 h. To convert the $MoO_3$ to metallic Mo, the green body was hydrogen-reduced at $750^{\circ}C$, and sintered at $1100^{\circ}C$ for 2 h. The sintered samples, frozen by heated Teflon cylinder, showed large pores with the size of about 40 ${\mu}m$ which were aligned parallel to the sublimable vehicles growth direction. The formation of unidirectionally aligned pores is explained by the rejection and accumulation of solid particles in the serrated solid-liquid interface.