Browse > Article
http://dx.doi.org/10.4150/KPMI.2013.20.4.253

Freeze Drying for Porous Mo with Sublimable Vehicles of Eutectic System  

Lee, Gyu-Tae (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Seo, Han Gil (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Suk, Myung-Jin (Department of Materials and Metallurgical Engineering, Kangwon National University)
Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.20, no.4, 2013 , pp. 253-257 More about this Journal
Abstract
Freeze drying for porous Mo was accomplished by using $MoO_3$ powder as the source and camphor-naphthalene eutectic system as the sublimable material. Eutectic composition of camphor-naphthalene slurries with the initial $MoO_3$ content of 5 vol%, prepared by milling at $55^{\circ}C$ with a small amount of oligomeric dispersant, was frozen at $-25^{\circ}C$. The addition of dispersant showed improvement of dispersion stability in slurries. Pores were generated subsequently by sublimation of the camphor-naphthalene during drying in air for 48 h. To convert the $MoO_3$ to metallic Mo, the green body was hydrogen-reduced at $750^{\circ}C$, and sintered at $1100^{\circ}C$ for 2 h. The sintered samples, frozen by heated Teflon cylinder, showed large pores with the size of about 40 ${\mu}m$ which were aligned parallel to the sublimable vehicles growth direction. The formation of unidirectionally aligned pores is explained by the rejection and accumulation of solid particles in the serrated solid-liquid interface.
Keywords
$MoO_3$/camphor-naphthalene slurry; Freeze-drying; Hydrogen reduction; Pore characteristics;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. Banhart: Prog. Mater. Sci., 46 (2001) 559.   DOI   ScienceOn
2 H. Nakajima: Prog. Mater. Sci., 52 (2007) 1091.   DOI   ScienceOn
3 T. Ohji and M. Fukushima: Intern. Mater. Rev., 57 (2012) 115.   DOI
4 Z.-Y. Deng, J.-F. Yang, Y. Beppu, M. Ando and T. Ohji: J. Am. Ceram. Soc., 85 (2002) 1961.   DOI   ScienceOn
5 N.-H. Kim, H. Song, S.-C. Choi and Y.-H. Choa: J. Kor. Powd. Met. Inst., 16 (2009) 262 (Korean).   DOI   ScienceOn
6 P.S. Liu and K.M. Liang: J. Mater. Sci., 36 (2001) 5059.   DOI   ScienceOn
7 T. Fukasawa, M. Ando, T. Ohji and S. Kanzaki: J. Am. Ceram. Soc., 84 (2001) 230.   DOI   ScienceOn
8 T. Fukasawa, Z.-Y. Deng, M. Ando, T. Ohji and Y. Goto: J. Mater. Sci., 36 (2001) 2523.   DOI   ScienceOn
9 B.-H. Yoon, E.-J. Lee, H.-E. Kim and Y.-H. Koh: J. Am. Ceram. Soc., 90 (2007) 1753.   DOI   ScienceOn
10 S.-T. Oh, S.-Y. Chang and M.-J. Suk: Trans. Nonferrous Met. Soc. China, 22 (2012) s688.   DOI
11 N.-Y. Kwon and S.-T. Oh: J. Kor. Powd. Met. Inst., 19 (2012) 259 (Korean).   DOI   ScienceOn
12 K. Araki and J.W. Halloran: J. Am. Ceram. Soc., 87 (2004) 2014.
13 P.M. Robinson, H.J. Rossell and H.G. Scott: Mol. Cryst. Liq. Cryst., 10 (1970) 61.   DOI   ScienceOn
14 M.-J. Suk and K. Leonartz: J. Crystal Growth, 213 (2000) 141.   DOI   ScienceOn
15 O. Mengual, G. Meunier, I. Cayre, K. Puech and P. Snabre: Talanta, 50 (1999) 445.   DOI   ScienceOn
16 W. Lee and S.-T. Oh: J. Kor. Powd. Met. Inst., 19 (2012) 446 (Korean).   DOI   ScienceOn
17 N.O. Shanti, K. Araki and J.W. Halloran: J. Am. Ceram. Soc., 89 (2006) 2444.   DOI   ScienceOn
18 K. Araki and J.W. Halloran: J. Am. Ceram. Soc., 87 (2004) 1859.
19 S. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup and C. Guizard: Nature Mater., 8 (2009) 966.   DOI   ScienceOn