• Title/Summary/Keyword: solid acid catalyst

Search Result 95, Processing Time 0.031 seconds

Synthesis of Low-Priced Catalyst from Coal Fly Ash for Pyrolysis of Waste Low Density Polyethylene (석탄비산재(石炭飛散災)로부터 저밀도(低密度) 폴리에틸렌 폐기물(廢棄物) 열분해용(熱分解用) 저가(低價) 촉매(觸媒) 합성(合成))

  • Jeong, Byung-Hwan;Na, Jeong-Geol;Kim, Sang-Guk;Mo, Se-Young;Chung, Soo-Hyun
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.48-55
    • /
    • 2007
  • A low-priced catalyst for pyrolysis of LDPE has been synthesized. Fly ash, which is waste material generated from coal-fired power plants was used as silica and alumna sources for solid acid catalyst. Amorphous silica-alumina catalysts (FSAs) were pre-pared by dissolution of silica and alumina from fly ash, followed by co-precipitation of the dissoluted ions. A series of LDPE pyrolysis were carried out in a thermogravimetric analyzer to investigate the effects of synthesis conditions such as NaOH/fly ash weight ratio and activation time one catalytic performance of FSAs. The physical properties of FSAs were examined and related to their catalytic performances. FSA(1.2-8) synthesized with NaOH/fly ash weight ratio of 1.2 and the activation time of 8 hours showed the best catalytic performance. The catalytic performance of FSA(1.2-8) was comparable with that of commercial catalysts and it was concluded that the FSA could be a good candidate for catalytic use in the recycling of waste polyolefins.

Synthesis of Renewable Jet Fuel Precursors from C-C Bond Condensation of Furfural and Ethyl Levulinate in Water

  • Cai, Chiliu;Liu, Qiying;Tan, Jin;Wang, Tiejun;Zhang, Qi;Ma, Longlong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.519-526
    • /
    • 2016
  • Biomass derived jet fuel is proven as a potential alternative for the currently used fossil oriented energy. The efficient production of jet fuel precursor with special molecular structure is prerequisite in producing biomass derived jet fuel. We synthesized a new jet fuel precursor containing branched $C_{15}$ framework by aldol condensation of furfural (FA) and ethyl levulinate (EL), where the latter of two could be easily produced from lignocellulose by acid catalyzed processes. The highest yield of 56% for target jet fuel precursor could be obtained at the optimal reaction condition (molar ratio of FA/EL of 2, 323 K, 50 min) by using KOH as catalyst. The chemical structure of $C_{15}$ precursor was specified as (3E, 5E)-6-(furan-2-yl)-3-(furan-2-ylmethylene)-4-oxohex-5-enoic acid ($F_2E$). For stabilization, this yellowish solid precursor was hydrogenated at low temperature to obtain C=C bonds saturated product, and the chemical structure was proposed as 4-oxo-6-(tetrahydrofuran-2-yl)-3-(tetrahydrofuran-2-yl)-methyl hexanoic acid ($H-F_2E$). The successful synthesis of the new jet fuel precursors showed the significance that branched jet fuel could be potentially produced from biomass derived FA and EL via fewer steps.

Preparation of Birnessite (δ-MnO2) from Acid Leaching Solution of Spent Alkaline Manganese Batteries and Removals of 1-naphthol (폐 알칼리망간전지의 산 침출액으로부터 버네사이트(δ-MnO2)의 제조 및 1-naphthol 제거)

  • Eom, Won-Suk;Lee, Han-Saem;Rhee, Dong-Seok;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.11
    • /
    • pp.603-610
    • /
    • 2016
  • This work studies the synthesis of birnessite (${\delta}-MnO_2$), a catalyst of oxidative-coupling reactions, from the powder of spent alkaline manganese batteries (SABP, <8 mesh) and evaluate its reactivity for 1-naphthol (1-NP) removals. Manganese oxides using commercial reagents ($MnSO_4$, $MnCl_2$) and the acid birnessite (A-Bir) by McKenzie method were also synthesized, and their crystallinity and reactivity for 1-NP were compared with one another. 96% Mn and 98% Zn were extracted from SABP by acid leaching at the condition of solid/liquid (S/L) ratio 1:10 in $1.0M\;H_2SO_4+10.5%\;H_2O_2$ at $60^{\circ}C$. From the acid leaching solution, 69% (at pH 8) and 94.3% (pH>13) of Mn were separated by hydroxide precipitation. Optimal OH/Mn mixing ratio (mol/mol) for the manganese oxide (MO) synthesis by alkaline (NaOH) hydrothermal techniques was 6.0. Under this condition, the best 1-NP removal efficiency was observed and XRD analysis confirmed that the MOs are corresponding to birnessite. Kinetic constants (k, at pH 6) for the 1-NP removals of the birnessites obtained from Mn recovered at pH 8 (${Mn^{2+}}_{(aq)}$) and pH>13 ($Mn(OH)_{2(s)}$) are 0.112 and $0.106min^{-1}$, respectively, which are similar to that from $MnSO_4$ reagent ($0.117min^{-1}$). The results indicated that the birnessite prepared from the SABP as a raw material could be used as an oxidative-coupling catalyst for removals of trace phenolic compounds in soil and water, and propose the recycle scheme of SAB for the birnessite synthesis.

Changes in the Physicochemical Characteristics and Trans Acid of Cottonseed Oil during Selective Hydrogenation (선택적 수소첨가 면실유의 이화학적 특성변화 및 트란스산 생성)

  • Kim, Hyean-Wee;Kim, Jong-Soo;Shim, Joong-Hwan;Park, Seong-Joon;Ahn, Tae-Hoe;Park, Ki-Moon;Choi, Chun-Un
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.681-685
    • /
    • 1990
  • Changes in the physicochemical characteristics and trans acid of cottonseed oil under the condition of selective hydrogenation, temperature$210^{\circ}C,\;H_2\;pressure\;0.3\;kg/cm^2$ Ni catalyst amount 0.12% (in oil), agitation speed 280 rpm, were investigated. The saturated fatty acid such as palmitic acid and stearic acid did not show any difference, while linoleic acid($50.03%{\rightarrow}9.38%$) were transformed to oleic acid ($20.65%{\rightarrow}60.35%$) during hydrogenation. In linoleic acid isomers, cc form were reduced significantly, but ct, tc, tt form showed little change, respectively. In oleic acid isomer, t form increased markedly, whereas there was no significant difference in c form. Meanwhile, melting point(MP) and solid fat content (SFC) were linearly increased, but iodine value(IV) linearly decreased as hydrogenation proceeded. From these results, linear regression equations were obtained as follows. MP & IV : Y= 1.59-2.36X(r=-0.96, p<0.05), SFC($at\;20^{\circ}C$) & MP : Y=2.81+2.01X(r=0.96, p<0.05), SFC($at\;20^{\circ}C$) & IV : Y=9.40-5.16X(r=-0.99, p<0.01), SFC($at\;20^{\circ}C$) & 18 : 1t : Y=6.25+8.48X(r=0.97, p<0.05)

  • PDF

Esterification of Lactic Acid with Alcohols (젓산과 알코올간의 에스테르화 반응)

  • Kim, Jong-Hwa;Han, Jee-Yeun;Lee, Sang-Wha
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.243-249
    • /
    • 2005
  • Esterification of lactic acid with alcohols catalyzed by Amberlyst-type ion exchange resins and sulfuric acid was carried out in a batch reactor with total /or partial recycle of distilled condensates, respectively. The esterification of lactic acid in the total-recycling reactor (n-butanol/lactic acid = 4, $100^{\circ}C$) was promoted by decreasing the residual water and increasing the mole ratio of n-butanol/lactic acid. Also, it was confirmed that methanol with simple structure and tert-butanol with superior substitution reactivity were more effective in increasing the conversion of esterification reaction, compared to ethanol, n-butanol, and iso-butanol. In a partial-recycling reactor (n-butanol/ammonium lactate = 4, $115^{\circ}C$), the conversion of ammonium lactate into butyl lactate with 1.0 wt% Amberyst-type resins was higher in comparison to that with 0.2 mol $H_2SO_4$ (per 1.0 mol ammonium lactate). The esterification was gradually occurred during the initial stage of reaction in the presence of solid catalyst, whereas the initial addition of $H_2SO_4$ did not affect the initial rate of esterification reaction because of ammonium sulfate formation by the neutralizing reaction of ammonium lactate with sulfuric acid.

Effect of Treatment Amounts of Slurry Composting and Biofiltration Liquid Fertilizer on Growth Characteristics and Bioethanol Production of Yellow Poplar (SCB액비 처리량에 따른 백합나무의 생장 및 바이오에탄올 생산)

  • Kim, Ho-Yong;Gwak, Ki-Seob;Kim, Hye-Yun;Ryu, Keun-Ok;Kim, Pan-Gi;Cho, Do-Hyun;Choi, Jin-Yong;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.459-468
    • /
    • 2011
  • The main purpose of this study was to examine the influence of treatment amounts of Slurry Composting and Biofiltration liquid fertilizer (SCBLF) on biomass growth of Yellow poplar (Liriodendron tulipifera) and to compare bioethanol production from the harvested wood. Relative growth rate, biomass production and leaf characteristics were significantly enhanced by SCBLF treatment and medium treatment plot showed highest value. Nitrogen compounds and water content in SCBLF affected to increase chlorophyll contents which led improving biomass production (64.67%) and glucose contents (6.07%) than control. Organosolv and dilute acid pretreatments were preliminarily carried for bioethanol production, and the pretreatment processes were conducted at all the same solid to liquid ratio (1 : 10), reaction temperature ($150^{\circ}C$), preheating time (40 min) and residence time (10 min). The water insoluble solid recovery of Organosolv pretreatment with 1% sulfuric acid as a catalyst was the lowest and that of medium treatment plot was 44.81%. Exchangeable cations in SCBLF might be affected to increase pretreatment effect. The simultaneous saccharification and fermentation process was followed to determine the ethanol production of the pretreated biomass. The highest ethanol production yield based on initial weight was obtained from high treatment plotby Organosolv pretreatment with 1% sulfuric acid (16.11%). But regarding biomass production, medium treatment plot produced most, and bioethanol production was increased by 72.93% than control.

Synthesis of Biodiesel from Soybean Oil over MoO3-SnO2-CeO2 Catalysts (MoO3-SnO2-CeO2 촉매에 의한 대두유로부터 바이오디젤의 합성)

  • Jung, Won Young;Lee, Man Sig;Hong, Seong-Soo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.723-728
    • /
    • 2012
  • The production of biodiesel by transesterification of soybean oil was performed on $MoO_3$, $SnO_2$ and $CeO_2$ mixed oxides. The catalysts were characterized using XRD and $NH_3$-TPD. $MoO_3$ showed the highest activity among the three metal oxides. When 7 wt% of catalysts was introduced into the reactants, the highest activity was obtained and the water added to reactant decreased the catalytic activity. $MoO_3$ and $SnO_2$ mixed with 50:50 showed the highest activity and $CeO_2$ added with 20% on the $MoO_3-SnO_2$ mixed oxide also showed the highest activity. The catalytic activity showed to have a good relationship with the amount of acid site of catalysts. When the waste soybean oil was used as a reactant, the conversion was decreased about 30%.

Selective Ni Recovery from Spent Ni-Mo-Based Catalysts (니켈-몰리브데늄 성분계 폐촉매로부터 니켈의 선택적 회수)

  • Lee, Tae Kyo;Han, Gi Bo;Yoon, Suk Hoon;Lee, Tae Jin;Park, No-Kuk;Chang, Won Chul
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.668-673
    • /
    • 2008
  • The objective of this study is to optimize the leaching conditions of sequential leaching and extracting processes for selective Ni recovery from spent Ni-Mo-based catalyst. The selective Ni recovery process consists of two processes of leaching and extracting process. In this 2-step process, Ni component is dissolved from solid spent Ni-Mo-based catalyst into leaching agent in leaching process and sequentially extracted to Ni complex with an extracting agent in the extracting process. The solutions of nitric acid ($HNO_3$), ammonium carbonate ($(NH_4)_2CO_3$) and sodium carbonate ($Na_2CO_3$) were used as a leaching agent in leaching process and oxalic acid was used as an extracting agent in extracting process. $HNO_3$ solution is the most efficient leaching agent among the various leaching agent. Also, the optimized leaching conditions for the efficient and selective Ni recovery were the leaching temperature of $90^{\circ}C,\;HNO_3$ concentration of 6.25 vol% and elapsed time of 3 h. As a result, Nickel oxalate having the highest yield of 88.7% and purity of 100% was obtained after sequentially leaching and extracting processes under the optimized leaching conditions.

Enhancement of Enzymatic Hydrolysis of Lignocellulosic Biomass by Organosolv Pretreatment with Dilute Acid Solution (효소당화를 위한 목질계 바이오매스의 유기용매 침출 전처리 공정)

  • Kim, Jun Beom;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.806-811
    • /
    • 2016
  • Organosolv pretreatment is the process to frationation of lignocellulosic feedstocks to enhancement of enzymatic hydrolysis. This process has advantages that organic solvents are always easy to recover by distillation and recycled for pretreatment. The chemical recovery in organosolv pretreatment can isolate lignin as a solid material and carbohydrates as fermentable sugars. For the economic considerations, using of low-molecular-weight alcohols such as ethanol and methanol have been favored. When acid catalysts are added in organic solvent, the rate of delignification could be increased. Mineral acids (hydrochloric acid, sulfuric acid, and phosphoric acid) are good catalysts to accelerate delignification and xylan degradation. In this study, the biomass was pretreated using 40~50 wt% ethanol at $170{\sim}180^{\circ}C$ during 20~60 min. As a results, the enzymatic digestibility of 2-stage pretreatment of rigida using 50 wt% ethanol at $180^{\circ}C$ was 40.6% but that of 1-stage pretreatment was 55.4% on same conditions, therefore it is shown that the pretreatment using mixture of the organosolv and catalyst was effective than using them separately.

Catalytic Decomposition of $SF_6$ by Hydrolysis and Oxidation over ${\gamma}-Al_2O_3$ (${\gamma}-Al_2O_3$ 촉매상에서 가수분해와 산화반응에 의한 $SF_6$ 촉매분해 특성)

  • Lee, Sun-Hwa;Park, No-Kuk;Yoon, Suk-Hoon;Chang, Won-Chul;Lee, Tae-Jin
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.273-279
    • /
    • 2009
  • $SF_6$, which has a high global warming potential, can be decomposed to sulfur and fluorine compounds through hydrolysis by $H_2O$ or oxidation by $O_2$ over solid acid catalysts. In this study ${\gamma}-Al_2O_3$ was employed as the solid acid catalyst for the abatement of $SF_6$ and its catalytic activity was investigated with respect to the reaction temperature and the space velocity. The catalytic activity for $SF_6$ decomposition by the hydrolysis reached the maximum at and above 973 K with the space velocity of $20,000\;ml/g_{-cat}{\cdot}h$, exhibiting a conversion very close to 100%. When the space velocity was lower than $45,000\;ml/g_{-cat}{\cdot}h$, the conversion was maintained at the maximum value. On the other hand, the conversion of $SF_6$ by the oxidation was about 20% under the same conditions. The SEM and XRD analyses revealed that the ${\gamma}-Al_2O_3$ was transformed to ${\alpha}-Al_2O_3$ during the hydrolysis and to $AlF_3$ during the oxidation, respectively. The size of $AlF_3$ after the oxidation was over $20\;{\mu}m$, and its catalytic activity was low due to the low surface area. Therefore, it was concluded that the hydrolysis over ${\gamma}-Al_2O_3$ was much more favorable than the oxidation for the catalytic decomposition of $SF_6$.