• Title/Summary/Keyword: solders

Search Result 166, Processing Time 0.023 seconds

Effects of Temperature and Mechanical Deformation on the Microhardness of Lead free and Composite Solders (무연 복합 솔더의 미소경도에 미치는 기계적 변형과 온도의 영향)

  • Lee Joo Won;Kang Sung K.;Lee Hyuck Mo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.121-128
    • /
    • 2005
  • Solder joints in microelectronic devices are frequently operated at an elevated temperature in service. They also experience plastic deformation caused by temperature excursion and difference in thermal expansion coefficients. Deformed solders can go through a recovery and recrystallization process at an elevated temperature, which would alter their microstructure and mechanical properties. In this study, to predict the changes in mechanical properties of Pb-free solder joints at high temperatures, the high temperature microhardness of several Pb-free and composite solders was measured as a function of temperature, deformation, and annealing condition. Solder alleys investigated include pure Sn, Sn-0.7Cu, Sn-3.5Ag, Sn-3.8Ag-0.7Cu, Sn-2.8Ag-7.0Cu (composite), and Sn-2.7Ag-4.9Cu-2.9Ni (composite). Numbers are all in wt.$\%$ unless specified otherwise. Solder pellets were cast at two cooling rates (0.4 and $7^{\circ}C$/s). The pellets were compressively deformed by $30\%$ and $50\%$ and annealed at $150^{\circ}C$ for 2 days. The microhardness was measured as a function of indentation temperature from 25 to $130^{\circ}C$. Their microstructure was also evaluated to correlate with the changes in microhardness.

  • PDF

Low Temperature Flip Chip Bonding Process

  • Kim, Young-Ho
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.09a
    • /
    • pp.253-257
    • /
    • 2003
  • The low temperature flip chip technique is applied to the package of the temperature-sensitive devices for LCD systems and image sensors since the high temperature process degrades the polymer materials in their devices. We will introduce the various low temperature flip chip bonding techniques; a conventional flip chip technique using eutectic Bi-Sn (mp: $138^{\circ}C$) or eutectic In-Ag (mp: $141^{\circ}C$) solders, a direct bump-to-bump bonding technique using solder bumps, and a low temperature bonding technique using low temperature solder pads.

  • PDF

New Generation of Lead Free Paste Development

  • Albrecht Hans Juergen;Trodler K. G.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.233-241
    • /
    • 2004
  • A new alloy definition will be presented concerning increasing demands for the board level reliability of miniaturized interconnections. The damage mechanism for LFBGA components on different board finishes is not quite understood. Further demands from mobile phones are the drop test, characterizing interface performance of different package constructions in relation to decreased pad constructions and therefore interfaces. The paper discusses the characterization of interfaces based on SnPb, SnPbXYZ, SnAgCu and SnAgCuInNd ball materials and SnAgCuInNd as solder paste, the stability after accelerated tests and the description of modified interfaces strictly related to the assembly conditions, dissolution behavior of finishes on board side and the influence of intermetallic formation. The type of intermetallic as well as the quantity of intermetallics are observed, primaliry the hardness, E modules describing the ability of strain/stress compensation. First results of board level reliability are presented after TCT-40/+150. Improvement steps from the ball formulation will be discussed in conjunction to the implementation of lead free materials In order to optimize ball materials for area array devices accelareted aging conditions like TCTs were used to analyze the board level reliability of different ball materials for BGA, LFBGA, CSP, Flip Chip. The paper outlines lead-free ball analysis in comparison to conventional solder balls for BGA and chip size packages. The important points of interest are the description of processability related to existing ball attach procedures, requirements of interconnection properties and the knowledge gained the board level reliability. Both are the primary acceptance criteria for implementation. Knowledge about melting characteristic, surface tension depend on temperature and organic vehicles, wetting behavior, electrical conductivity, thermal conductivity, specific heat, mechanical strength, creep and relaxation properties, interactions to preferred finishes (minor impurities), intermetallic growth, content of IMC, brittleness depend on solved elements/IMC, fatigue resistance, damage mechanism, affinity against oxygen, reduction potential, decontamination efforts, endo-/exothermic reactions, diffusion properties related to finishes or bare materials, isothermal fatigue, thermo-cyclic fatigue, corrosion properties, lifetime prediction based on board level results, compatibility with rework/repair solders, rework temperatures of modified solders (Impurities, change in the melting point or range), compatibility to components and laminates.

  • PDF

New Generation of Lead Free Solder Spheres 'Landal - Seal'

  • Walter H.;Trodler K. G.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.211-219
    • /
    • 2004
  • A new alloy definition will be presented concerning increasing demands for the board level reliability of miniaturized interconnections. The damage mechanism for LFBGA components on different board finishes is not quite understood. Further demands from mobile phones are the drop test, characterizing interface performance of different package constructions in relation to decreased pad constructions and therefore interfaces. The paper discusses the characterization of interfaces based on SnPb, SnPbXYZ, SnAgCu and SnAgCuInNd ball materials and SnAgCuInNd as solder paste, the stability after accelerated tests and the description of modified interfaces stric시y related to the assembly conditions, dissolution behavior of finishes on board side and the influence of intermetallic formation. The type of intermetallic as well as the quantity of intermetallics are observed, primaliry the hardness, E modules describing the ability of strain/stress compensation. First results of board level reliability are presented after TCT-40/+150. Improvement steps from the ball formulation will be discussed in conjunction to the implementation of lead free materials. In order to optimize ball materials for area array devices accelareted aging conditions like TCTs were used to analyze the board level reliability of different ball materials for BGA, LFBGA, CSP, Flip Chip. The paper outlines lead-free ball analysis in comparison to conventional solder balls for BGA and chip size packages. The important points of interest are the description of processability related to existing ball attach procedures, requirements of interconnection properties and the knowledge gained the board level reliability. Both are the primary acceptance criteria for implementation. Knowledge about melting characteristic, surface tension depend on temperature and organic vehicles, wetting behavior, electrical conductivity, thermal conductivity, specific heat, mechanical strength, creep and relaxation properties, interactions to preferred finishes (minor impurities), intermetallic growth, content of IMC, brittleness depend on solved elements/IMC, fatigue resistance, damage mechanism, affinity against oxygen, reduction potential, decontamination efforts, endo-/exothermic reactions, diffusion properties related to finishes or bare materials, isothermal fatigue, thermo-cyclic fatigue, corrosion properties, lifetime prediction based on board level results, compatibility with rework/repair solders, rework temperatures of modified solders (Impurities, change in the melting point or range), compatibility to components and laminates.

  • PDF

Intermetallic Formation between Sn-Ag based Solder Bump and Ni Pad in BGA Package (BGA 패키지에서 Sn-Ag계 솔더범프와 Ni pad 사이에 형성된 금속간화합물의 분석)

  • Yang, Seung-Taek;Chung, Yoon;Kim, Young-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.2
    • /
    • pp.1-9
    • /
    • 2002
  • The intermetallic formation between Sn-Ag-(Cu) solders and metal pads in a real BGA package was characterized using SEM, EDS, and XRD. The intermetallic phase formed in the interface between Sn-Ag-Cu and Au/Ni/Cu pad is likely to be ternary compound of $(Cu,Ni)_6Sn_5$ from EDS analysis High concentration of Cu was observed in the solder/Ni interface. XRD analysis confirmed that $\eta -Cu_6 Sn_5$ type was intermetallic phase formed in the interface between Cu containing solders and Ni substrates and $Ni_3$Sn_4$ intermetallic was formed in the Sn-Ag solder/Ni interface. The thickness of intermetallic phase increased with the reflow times and Cu concentration in solder.

  • PDF

Practical Application of Sn-3.0Ag-0.5Cu Lead Free Solder in Electronic Production

  • Chae Kyu-Sang;Min Jae-Sang;Kim Ik-Joo;Cho Il-Je
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.65-71
    • /
    • 2005
  • At present, Electronic industries push ahead to eliminate the Pb(Lead) -a hazardous material-from all products. Especially, we have performed to select the optimum standard composition of lead free alloy for the application to products for about 3 years from 2000. These days, we have the chance for applying to the mass-production. This project constructed the system for applying the lead free solders on consumer electronic products, which is one of the major products of the LG Electronics. To select the lead free solders with corresponding to the product features, we have passed through the test and applied with Sn-3.0Ag-0.5Cu alloy system to our products, and for the application to the high melting temperature composition, we secured the thermal resistance of the many parts and substrate and optimized the processing conditions. We have operated the temperature cycling test and the high temperature storage test under the standards to confirm the reliability of the products. On these samples, we considered the consequence of our decision by the operating test. For the long life time of the product, we have operated the temperature cycling test at $-45^{\circ}C\;-\;+125^{\circ}C$, 1 cycle/hour, 1000 cycles. Also we have tested the tin whisker growth about lead free plating on lead finish. We have analyzed with the SEM, EDS and any other equipment for confirming the failure mode at the joint and the tin whisker growth on lead free finish.

  • PDF

Lower Temperature Soldering of Capacitor Using Sn-Bi Coated $Sn-3.5\%Ag$ Solder (Sn-Bi도금 $Sn-3.5\%Ag$ 솔더를 이용한 Capacitor의 저온 솔더링)

  • Kim Mi-Jin;Cho Sun-Yun;Kim Sook-Hwan;Jung Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.23 no.3
    • /
    • pp.61-67
    • /
    • 2005
  • Since lead (Pb)-free solders for electronics have higher melting points than that of eutectic Sn-Pb solder, they need higher soldering temperatures. In order to decrease the soldering temperature we tried to coat Sn-Bi layer on $Sn-3.5\%Ag$ solder by electroplating, which applies the mechanism of transient liquid phase bonding to soldering. During heating Bi will diffuse into the $Sn-3.5\%Ag$ solder and this results in decreasing soldering temperature. As bonding samples, the 1608 capacitor electroplated with Sn, and PCB, its surface was finished with electroless-plated Ni/Au, were selected. The $Sn-95.7\%Bi$ coated Sn-3.5Ag was supplied as a solder between the capacitor and PCB land. The samples were reflowed at $220^{\circ}C$, which was lower than that of normal reflow temperature, $240\~250^{\circ}C$, for the Pb-free. As experimental result, the joint of $Sn-95.7\%Bi$ coated Sn-3.5Ag showed high shear strength. In the as-reflowed state, the shear strength of the coated solder showed 58.8N, whereas those of commercial ones were 37.2N (Sn-37Pb), 31.4N (Sn-3Ag-0.5Cu), and 40.2N (Sn-8Zn-3Bi). After thermal shock of 1000 cycles between $-40^{\circ}C$ and $+125^{\circ}C$, shear strength of the coated solder showed 56.8N, whereas the previous commercial solders were in the range of 32.3N and 45.1N. As the microstructures, in the solder $Ag_3Sn$ intermetallic compound (IMC), and along the bonded interface $Ni_3Sn_4$ IMC were observed.

A Study on the Soldering Characteristics of Sn-Ag-Bi-In Ball in BGA (Sn-Ag-Bi-In계 BGA볼의 솔더링 특성 연구)

  • 문준권;김문일;정재필
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.505-509
    • /
    • 2002
  • Pb is considered to be eliminated from solder, due to its toxicity. However, melting temperatures of most Pb-free solders are known higher than that of Sn37Pb. Therefore, there is a difficulty to apply Pb-free solders to electronic industry. Since Sn3Ag8Bi5In has relatively lower melting range as $188~200^{\circ}C$, on this study. Wettability and soldering characteristics of Sn3Ag8Bi5In solder in BGA were investigated to solve for what kind of problem. Zero cross time, wetting time, and equilibrium force of Sn3Ag8Bi5In solder for Cu and plated Cu such as Sn, Ni, and Au/Ni-plated on Cu were estimated. Plated Sn on Cu showed best wettability for zero cross time, wetting time and equilibrium farce. Shear strength of the reflowed joint with Sn3Ag8Bi5In ball in BGA was investigated. Diameter of the ball was 0.5mm, UBM(under bump metallurgy) was $Au(0.5\mu\textrm{m})Ni(5\mu\textrm{m})/Cu(18\mu\textrm{m})$ and flux was RMA type. For the reflow soldering, the peak reflow temperature was changed in the range of $220~250^{\circ}C$, and conveyor speed was 0.6m/min.. The shear strength of Sn3Ag8Bi5In ball showed similar level as those of Sn37Pb. The soldered balls are aged at $110^{\circ}C$ for 36days and their shear strengths were evaluated. The shear strength of Sn3Ag8Bi5In ball was increased from 480gf to 580gf by aging for 5 days.

Reliability evaluation of Pb-free solder joint with immersion Ag-plated Cu substrate (Immersion Ag가 도금된 Cu기판을 가진 Pb-free solder 접합부의 신뢰성 평가)

  • Yun Jeong-Won;Jeong Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.30-32
    • /
    • 2006
  • The interfacial reaction and reliability of eutectic Sn-Pb and Pb-free eutectic Sn-Ag ball-grid-array (BGA) solders with an immersion Ag-plated Cu substrate were evaluated following isothermal aging at $150^{\circ}C$. During reflowing, the topmost Ag layer was dissolved completely into the molten solder, leaving the Cu layer exposed to the molten solder for both solder systems. A typical scallop-type Cu-Sn intermetallic compound (IMC) layer was formed at both of the solder/Cu interfaces during reflowing. The thickness of the Cu-Sn IMCs for both solders was found to increase linearly with the square root of isothermal aging time. The growth of the $Cu_3Sn$ layer for the Sn-37Pb solder was faster than that for the Sn-3.5Ag solder, In the case of the Sn-37Pb solder, the formation of the Pb-rich layer on the Cu-Sn IMC layer retarded the growth of the $Cu_6Sn_5$ IMC layer, and thereby increased the growth rate of the $Cu_3Sn$ IMC layer. In the ball shear test conducted on the Sn-37Pb/Ag-plated Cu joint after aging for 500h, fracturing occurred at the solder/$Cu_6Sn_5$ interface. The shear failure was significantly related to the interfacial adhesion strength between the Pb-rich and $Cu_6Sn_5$ IMC layers. On the other hand, all fracturing occurred in the bulk solder for the Sn-3.5Ag/Ag-plated Cu joint, which confirmed its desirable joint reliability.

  • PDF