• Title/Summary/Keyword: solar thermal

Search Result 1,713, Processing Time 0.024 seconds

The Economic Effects of the New and Renewable Energies Sector (신재생에너지 부문의 경제적 파급효과 분석)

  • Lim, Seul-Ye;Park, So-Yeon;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.31-40
    • /
    • 2014
  • The Korean government made the 2nd Energy Basic Plan to achieve 11% of new and renewable energies distribution rate until 2035 as a response to cope with international discussion about greenhouse gas emission reduction. Renewable energies include solar thermal, photovoltaic, bioenergy, wind power, small hydropower, geothermal energy, ocean energy, and waste energy. New energies contain fuel cells, coal gasification and liquefaction, and hydrogen. As public and private investment to enhance the distribution of new and renewable energies, it is necessary to clarify the economic effects of the new and renewable energies sector. To the end, this study attempts to apply an input-output analysis and analyze the economic effects of new and renewable energies sector using 2012 input-output table. Three topics are dealt with. First, production-inducing effect, value-added creation effect, and employment-inducing effect are quantified based on demand-driven model. Second, supply shortage effects are analyzed employing supply-driven model. Lastly, price pervasive effects are investigated applying Leontief price model. The results of this analysis are as follows. First, one won of production or investment in new and renewable energies sector induces 2.1776 won of production and 0.7080 won of value-added. Moreover, the employment-inducing effect of one billion won of production or investment in new and renewable energies sector is estimated to be 9.0337 persons. Second, production shortage cost from one won of supply failure in new and renewable energies sector is calculated to be 1.6314 won, which is not small. Third, the impact of the 10% increase in new and renewable energies rate on the general price level is computed to be 0.0123%, which is small. This information can be utilized in forecasting the economic effects of new and renewable energies sector.

Heat Budget Analysis of Light Thin Layer Green Roof Planted with Zoysia japonica (한국잔디식재 경량박층형 옥상녹화의 열수지 해석)

  • Kim, Se-Chang;Lee, Hyun-Jeong;Park, Bong-Ju
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.6
    • /
    • pp.190-197
    • /
    • 2012
  • The purpose of this study was to evaluate thermal environment and heat budget of light thin layer green roof through an experiment in order to quantify its heat budget. Two concrete model boxes($1.2m(W){\times}1.2m(D){\times}1.0m(H)$) were constructed: One experiment box with Zoysia japonica planted on substrate depth of 10cm and one control box without any plant. Between June 6th and 7th, 2012, outside climatic conditions(air temperature, relative humidity, wind direction, wind speed), evapotranspiration, surface and ceiling temperature, heat flux, and heat budget of the boxes were measured. Daily maximum temperature of those two days was $29.4^{\circ}C$ and $30^{\circ}C$, and daily evapotranspiration was $2,686.1g/m^2$ and $3,312.8g/m^2$, respectively. It was found that evapotranspiration increased as the quantity of solar radiation increased. A surface and ceiling temperature of those two boxes was compared when outside air temperature was the greatest. and control box showed a greater temperature in both cases. Thus it was found that green roof was effective in reducing temperature. As results of heat budget analysis, heat budget of a green roof showed a greater proportion of net radiation and latent heat while heat budget of the control box showed a greater proportion of sensible heat and conduction heat. The significance of this study was to analyze heat budget of green roof temperature reduction. As substrate depth and types, species and seasonal changes may have influences on temperature reduction of green roof, further study is necessary.

Optimization Process Models of Gas Combined Cycle CHP Using Renewable Energy Hybrid System in Industrial Complex (산업단지 내 CHP Hybrid System 최적화 모델에 관한 연구)

  • Oh, Kwang Min;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.65-79
    • /
    • 2019
  • The study attempted to estimate the optimal facility capacity by combining renewable energy sources that can be connected with gas CHP in industrial complexes. In particular, we reviewed industrial complexes subject to energy use plan from 2013 to 2016. Although the regional designation was excluded, Sejong industrial complex, which has a fuel usage of 38 thousand TOE annually and a high heat density of $92.6Gcal/km^2{\cdot}h$, was selected for research. And we analyzed the optimal operation model of CHP Hybrid System linking fuel cell and photovoltaic power generation using HOMER Pro, a renewable energy hybrid system economic analysis program. In addition, in order to improve the reliability of the research by analyzing not only the heat demand but also the heat demand patterns for the dominant sectors in the thermal energy, the main supply energy source of CHP, the economic benefits were added to compare the relative benefits. As a result, the total indirect heat demand of Sejong industrial complex under construction was 378,282 Gcal per year, of which paper industry accounted for 77.7%, which is 293,754 Gcal per year. For the entire industrial complex indirect heat demand, a single CHP has an optimal capacity of 30,000 kW. In this case, CHP shares 275,707 Gcal and 72.8% of heat production, while peak load boiler PLB shares 103,240 Gcal and 27.2%. In the CHP, fuel cell, and photovoltaic combinations, the optimum capacity is 30,000 kW, 5,000 kW, and 1,980 kW, respectively. At this time, CHP shared 275,940 Gcal, 72.8%, fuel cell 12,390 Gcal, 3.3%, and PLB 90,620 Gcal, 23.9%. The CHP capacity was not reduced because an uneconomical alternative was found that required excessive operation of the PLB for insufficient heat production resulting from the CHP capacity reduction. On the other hand, in terms of indirect heat demand for the paper industry, which is the dominant industry, the optimal capacity of CHP, fuel cell, and photovoltaic combination is 25,000 kW, 5,000 kW, and 2,000 kW. The heat production was analyzed to be CHP 225,053 Gcal, 76.5%, fuel cell 11,215 Gcal, 3.8%, PLB 58,012 Gcal, 19.7%. However, the economic analysis results of the current electricity market and gas market confirm that the return on investment is impossible. However, we confirmed that the CHP Hybrid System, which combines CHP, fuel cell, and solar power, can improve management conditions of about KRW 9.3 billion annually for a single CHP system.