• Title/Summary/Keyword: solar photovoltaic cell

Search Result 934, Processing Time 0.229 seconds

A study of Comparative Analysis of CPV and PV Module through Long-term Outdoor Testing (장기 Outdoor Test를 통한 CPV와 PV 모듈의 발전량 비교분석)

  • Kim, Minsu;Lee, Yuri;Cho, Minje;Oh, Soo Young;Jung, Jae Hak
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.33-37
    • /
    • 2017
  • Today, photovoltaic power generation mostly uses Si crystalline solar cell modules. The most vulnerable part of the Si solar cell module is that the power generation decreases due to the temperature rise. But, it is widely used because of low installation cost. In the solar market, where Si crystalline solar cell modules are widely used. The CPV (Concentrated Photovoltaic) module appeared in the solar market. The CPV module reduces the manufacturing cost of the solar cell by using non-Si in the solar cell. Also, there is an advantage that a rise in temperature does not cause a drop in power generation. But this requires high technology to install and has a disadvantage that the initial installation cost is expensive compared to normal Si solar cell module. So that we built a testbed to see these characteristics. The testbed was used to measure the amount of power generation in a long-term outdoor environment and compared with the general Si solar cell module.

Durability Evaluation Study of Re-manufactured Photovoltaic Modules (재 제조 태양광모듈의 내구성능 평가 연구)

  • Kyung Soo Kim
    • Current Photovoltaic Research
    • /
    • v.12 no.1
    • /
    • pp.17-23
    • /
    • 2024
  • Photovoltaic (PV) power generation is the world's best and largest renewable energy that generates electricity with infinite sunlight. Solar cell modules are a component of photovoltaic power generation and must have a long-term durability of at least 25 years. The development of processes and equipment that can be recovered through the recycling of metals and valuable metals when the solar module's lifespan is over has been completed to the level of commercialization, but few processes have been developed that require repair due to initial defects. This is mainly due to the economic problems caused by remaking. However, if manufacturing processes such as repairing solar cell modules that have been proven to be early defects are established and the technical review of long-term reliability and durability reaches a certain level, it is considered that it will be a recommended process technology for environmental economics. In this paper, assuming that a defective solar cell module occurs artificially, a manufacturing process for replacement of solar cells was developed, and a technical verification of the manufacturing technology was conducted through long-term durability evaluation in accordance with KS C 8561. Through this, it was determined that remanufacturing technology for solar cell replacement of solar cell modules that occurred in a short period of time after installation was possible, and the research results were announced through a journal to commercialize solar modules using manufacturing technology in the solar market in the future.

Effect of Laser Scribing in High Efficiency Crystal Photovoltaic Cells to Produce Shingled Photovoltaic Module (슁글드 모듈 제작을 위한 고효율 실리콘 태양전지의 레이저 스크라이빙에 의한 영향)

  • Lee, Seong Eun;Park, Ji Su;Oh, Won Je;Lee, Jae Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.291-296
    • /
    • 2020
  • The high power of a shingled photovoltaic module can be attributed to its low cell-to-module loss. The production of high power modules in limited area requires high efficiency solar cells. Shingled photovoltaic modules can be made by divided solar cells, which can be produced by the laser scribing process. After dividing the 21% PERC cell using laser scribing, the efficiency decreased by approximately 0.35%. However, there was no change in the efficiency of the solar cell having relatively lower efficiency, because the laser scribing process induce higher heat damages in solar cells with high efficiency. To prove this phenomena, the J0 (leakage current density) of each cell was analyzed. It was found that the J0 of 21% PERC increased about 17 times between full and divided solar cell. However, the J0 of 20.2% PERC increased only about 2.5 times between full and divided solar cell.

Performance Measurement Method of Several Types of Photovoltaic Module Depending on Efficiency (고효율 태양전지모듈의 성능측정 방법)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Yoon, Soon-Gil
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.93-99
    • /
    • 2011
  • To guarantee more exact maximum power of solar cell module, it is absolutely required to have performance characteristics of various solar cells. Today, there are many types of solar simulator for large area measurement. But it is very opaque how to select the best one for various solar cell module like crystalline silicon solar cell, high efficiency solar cell, amorphous silicon thin film solar cell, CdTe and CIGS solar cell module. So, in this paper 4 types of photovoltaic module were selected to compare the electrical characteristics by changing light pulse duration time and voltage scan direction. Light pulse duration time was varied from 10msec to 800msec. And two types of voltage scan directions, Voc->Isc and Isc->Voc were selected. From this results, optimum measuring condition was suggested and electrical variation was analysed for each types of solar cell module. The detail description is specified as the following paper.

A Study on the Parameter Estimation of Solar Cell Module (태양전지 모듈의 파라미터 추정에 관한 연구)

  • Kim, Tae-Yeop;Lee, Yun-Gyu;An, Ho-Gyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.2
    • /
    • pp.92-98
    • /
    • 2002
  • It is necessary to measure the solar cell parameter fur understanding characteristic of solar cell and applying to many other fields. Since photovoltaic system consists of solar cell module, which are connected each other in series and parallel, it is not proper to apply a solar cell parameter to photovoltaic system. Therefore, to estimate the solar tell module and to solve the problem of the established algorithm is on demand. In this paper the authors have improved the accuracy of solar cell module Parameter estimation by compensating series and Parallel resistance, and developed a new parameter estimation algorithm, which can be applied to photovoltaic system without high cost measuring equipment. And the validity of proposed algorithm is verified by the simulation and experimentation.

Analysis of PWM Converter for V-I Output Characteristics of Solar Cell

  • Han, Jeong-Man;Jeong, Byung-Hwan;Gho, Jae-Seok;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.62-67
    • /
    • 2003
  • Recently, photovoltaic system has been studied widely as a renewable energy system, because it does not produce environmental pollution and it has infinity energy source from the sun. A study on photovoltaic system has a lot of problems like as reappearance and repetition of some situation in the laboratory experiment for development of MPPT algorithm and islanding detection algorithm. because output characteristics of solar cell are varied by irradiation and surface temperature of solar cell. Therefore, the assistant equipment which emulates the solar cell characteristics which can be controlled arbitrarily by researcher is require to the researchers for reliable experimental data. In this paper, the virtual implement of solar cell (VISC) system is proposed to solve these problems and to achieve reliable experimental result on photovoltaic system. VISC system emulates the solar cell output characteristics, and this system can substitute solar cell in laboratory experiment system. To realize the VISC, mathematical model of solar cell is studied for driving converter and the DC/DC converters are compared in viewpoint of tracking error using computer simulation. Output dynamic characteristic of PV array is varied by irradiation and PWM converter performance is studied using PSIM simulator.

New Generation Multijunction Solar Cells for Achieving High Efficiencies

  • Lee, Sunhwa;Park, Jinjoo;Kim, Youngkuk;Kim, Sangho;Iftiquar, S.M.;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.2
    • /
    • pp.31-38
    • /
    • 2018
  • Multijunction solar cells present a practical solution towards a better photovoltaic conversion for a wider spectral range. In this review, we compare different types of multi-ijunction solar cell. First, we introduce thin film multijunction solar cell include to the thin film silicon, III-V material and chalcopyrite material. Until now the maximum reported power conversion efficiencies (PCE) of solar cells having different component sub-cells are 14.0% (thin film silicon), 46% (III-V material), 4.4% (chalcopyrite material) respectively. We then discuss the development of multijunction solar cell in which c-Si is used as bottom sub-cell while III-V material, thin film silicon, chalcopyrite material or perovskite material is used as top sub-cells.

Calculation of capacity of solar cell and battery for stable solar system design (안정적인 태양광발전시스템의 설계를 위한 태양전지와 배터리 용량산정 방안)

  • Lee Mi-Young;Lee Jun-Ha;Lee Hoong-Joo;Lee Woo-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.5
    • /
    • pp.396-400
    • /
    • 2005
  • Solar cell and battery capacity are very important for stable design of stand-alone solar photovoltaic power generation system. If capacity computation of solar cell and battery is a wrong, operation of the solar system becomes unstable and results in breakdown. Therefore, in this paper, a solar cell and battery capacity calculation method considering the load characteristics has been proposed for the stable operation of the solar photovoltaic power generation system.

  • PDF

PID Recovery Characteristics of Photovoltaic Modules in Various Environmental Conditions (다양한 환경조건에서 태양전지모듈의 PID회복특성)

  • Lee, Eun-Suk;Jung, Tea-Hee;Go, Seok-Hwan;Ju, Young-Chul;Chang, Hyo Sik;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.5
    • /
    • pp.57-65
    • /
    • 2015
  • The Potential Induced Degradation(PID) in PV module mainly affected by various performance conditions such as a potential difference between solar cell and frame, ambient temperature and relative humidity. The positive charges as sodium ions in front glass reach solar cell in module by a potential difference and are accumulated in the solar cell. The ions accelerate the recombination of generation electrons within solar cell under illumination, which reduces the entire output of module. Recently, it was generally known that PID generation is suppressed by controlling the thickness of SiNx AR coating layer on solar cell or using Sodium-free glass and high resistivity encapsulant. However, recovery effects for module with PID are required, because those methods permanently prevent generating PID of module. PID recovery method that voltage reversely applies between solar cell and frame contract to PID generation begins to receive attention. In this paper, PID recovery tests by using voltage under various outdoor conditions as humidity, temperature, voltage are conducted to effectively mitigate PID in module. We confirm that this recovery method perfectly eliminates PID of solar cell according to repeative PID generation and recovery as well as the applied voltage of three factors mainly affect PID recovery.

Roof-attached Crystalline Silicon Photovoltaic Module's Thermal Characteristics (지붕 설치형 결정질 실리콘 태양전지모듈의 온도 특성)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Yoon, Soon-Gil
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.11-18
    • /
    • 2012
  • To expect accurately the maximum power of solar cell module under various installation conditions, it is required to know the performance characteristics like temperature dependence. Today, the PV (photovoltaic) market in Korea has been growing. Also BIPV (building integrated photovoltaic) systems are diversified and become popular. But thermal dependence of PV module is little known to customers and system installers. In IEC 61215,a regulation for testing the crystalline silicon solar cell module, the testing method is specified for modules. However there is limitation for testing the module with diverse application examples. In extreme installation method, there is no air flow between rear side of module and ambient, and it can induce temperature increase. In this paper, we studied the roof type installation of PV module on the surface of one-axis tracker system. We measured temperature on every component of PV module and compared to open-rack structure. As a result, we provide the foundation that explains temperature characteristics and NOCT (nominal operation cell temperature) difference. The detail description will be specified as the following paper.