• 제목/요약/키워드: solar imaging spectrograph

검색결과 62건 처리시간 0.03초

COMPONENT-BASED DEVELOPMENT OF OBSERVATIONAL SOFTWARE FOR KASI SOLAR IMAGING SPECTROGRAPH

  • Choi, Seong-Hwan;Kim, Yeon-Han;Moon, Yong-Jae;Choi, Kyung-Seok;Park, Young-Deuk;Jang, Bi-Ho;Kim, Su-Jin;Kim, Kap-Sung
    • 천문학회지
    • /
    • 제38권4호
    • /
    • pp.463-470
    • /
    • 2005
  • In this paper, we have made the component-based development of observational software for KASI solar imaging spectrograph (KSIS) that is able to obtain three-dimensional imaging spectrograms by using a scanning mirror in front of the spectrograph slit. Since 2002, the KASI solar spectrograph has been successfully operated to observe solar spectra for a given slit region as well as to inspect the response functions of narrow band filters. To improve its capability, we have developed the KSIS that can perform sequential observations of solar spectra by simultaneously controlling the scanning mirror and the CCD camera via Visual C++. Main task of this paper is to introduce the development of the component-based software for KSIS. Each component of the software is reusable on the level of executable file instead of source code because the software was developed by using CBD (component-based development) methodology. The main advantage of such a component-based software is that key components such as image processing component and display component can be applied to other similar observational software without any modifications. Using this software, we have successfully obtained solar imaging spectra of an active region (AR 10708) including a small sunspot. Finally, we present solar $H{\alpha}$ spectra ($6562.81{\AA}$) that were obtained at an active region and a quiet region in order to confirm the validity of the developed KSIS and its software.

1.6 m 신태양망원경용 고속영상태양분광기 개발 (DEVELOPMENT OF THE FAST IMAGING SOLAR SPECTROGRAPH FOR 1.6 m NEW SOLAR TELESCOPE)

  • 나자경;채종철;박영득;박형민;장비호;안광수;양희수;조경석;김연한;김광동
    • 천문학논총
    • /
    • 제26권1호
    • /
    • pp.45-54
    • /
    • 2011
  • KASI and Seoul National University developed the Fast Imaging Solar Spectrograph (FISS) as one of major scientific instruments for the 1.6 m New Solar Telescope (NST) and installed it in the Coude room of the NST at Big Bear Solar Observatory (BBSO) in May, 2010. The major objective of the FISS is to study the fine-scale structures and dynamics of plasma in the photosphere and chromosphere. To achieve it, the FISS is required to take data with a spectral resolution higher than $10^5$ at the spectrograph mode and a temporal resolution less than 10 seconds at the imaging mode. The FISS is a spectrograph using Echelle grating and has characteristics that can observe dual bands (H${\alpha}$ and CaII 8542) simultaneously and perform fast imaging using fast raster scan and two fast CCD cameras. In this paper, we introduce briefly the whole process of FISS development from the requirement analysis to the first observations.

Development of Fast Imaging Solar Spectrograph and Observation of the Solar Chromosphere

  • Park, Hyung-Min
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.80.1-80.1
    • /
    • 2011
  • It is well known that chromospheric features are fine structured, short lived, and dynamic. Spectrograph-based observation have obvious advantage of getting physical properties of solar chromosphere than filter-based one. We developed and installed Fast Imaging Solar Spectrograph (FISS) attached on New Solar Telescope in Big Bear Solar Observatory. FISS have capabilities to take data with high time, spatial and spectral resolution at two wavelengths(Ha $6563{\AA}$ and CaII $8542{\AA}$) simultaneously. After FISS installation, we observed various chromospheric features : active regions, quiet regions, filaments/prominences and so on. As one of chromospheric studies, we analyzed solar prominences and got physical parameters by using simple radiative transfer modeling. The ranges of temperature and non-thermal velocities are found to be 7500-13000K and 5-11km/s, respectively.

  • PDF

The Standard Processing of a Time Series of Imaging Spectral Data Taken by the Fast Imaging Solar Spectrograph on the Goode Solar Telescope

  • Chae, Jongchul;Kang, Juhyeong;Cho, Kyuhyoun
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.46.1-46.1
    • /
    • 2018
  • The Fast Imaging Solar Spectrograph (FISS) on the Goode Solar Telescope (GST) at Big Bear Solar Observatory is the imaging Echelle spectrograph developed by the Solar Astronomy Group of Seoul National University and the Solar and Space Weather Group of Korea Astronomy and Space Science Institute. The instrument takes spectral data from a region on the Sun in two spectral bands simultaneously. The imaging is done by the organization of intensity data obtained from the fast raster scan of the slit over the field of view. Since the scan repeats many times, the whole set of data can be used to construct the movies of monochromatic intensity at arbitrary wavelengths within the spectral bands, and those of line-of-sight velocity inferred from different spectral lines. So far there are two standard observing configurations: one recording the $H{\alpha}$ line and the Ca II 8542 line simultaneously, and the other recording the Na I D2 line and Fe I 5435 line simultaneously. We have developed the procedures to produce the standard data for each observing configuration. The procedures include the spatial alignment, the correction of spectral shift of instrumental origin, and the lambdameter measurement of the line wavelength. The standard data include the movie of continuum intensity, the movies of intensity and velocity inferred from a chromospheric spectral line, the movies of intensity and velocity inferred from a photospheric line. The processed standard data will be freely available online (fiss.snu.ac.kr) to be used for research and public outreach. Moreover, the IDL procedures will be provided on request as well so that each researcher can adapt the programs for their own research.

  • PDF

PRELIMINARY FEASIBILITY STUDY OF THE SOLAR OBSERVATION PAYLOADS FOR STSAT-CLASS SATELLITES

  • Moon, Yong-Jae;Cho, Kyung-Seok;Jin, Ho;Chae, Jong-Chul;Lee, Sung-Ho;Seon, Kwang-Il;Kim, Yeon-Han;Park, Young-Deuk
    • Journal of Astronomy and Space Sciences
    • /
    • 제21권4호
    • /
    • pp.329-342
    • /
    • 2004
  • In this paper, we present preliminary feasibility studies on three types of solar observation payloads for future Korean Science and Technology Satellite (STSAT) programs. The three candidates are (1) an UV imaging telescope, (2) an UV spectrograph, and (3) an X-ray spectrometer. In the case of UV imaging telescope, the most important constraint seems to be the control stability of a satellite in order to obtain a reasonably good spatial resolution. Considering that the current pointing stability estimated from the data of the Far ultraviolet Imaging Spectrograph (FIMS) onboard the Korean STSAT-1, is around 1 arc minutes/sec, we think that it is hard to obtain a spatial resolution sufficient for scientific research by such an UV Imaging Telescope. For solar imaging missions, we realize that an image stabilization system, which is composed of a small guide telescope with limb sensor and a servo controller of secondary mirror, is quite essential for a very good pointing stability of about 0.1 arcsec. An UV spectrograph covering the solar full disk seems to be a good choice in that there is no risk due to poor pointing stability as well as that it can provide us with valuable UV spectral irradiance data valuable for studying their effects on the Earth's atmosphere and satellites. The heritage of the FIMS can be a great advantage of developing the UV spectrograph. Its main disadvantage is that two major missions are in operation or scheduled. Our preliminary investigations show that an X-ray spectrometer for the full disk Sun seems to be the best choice among the three candidates. The reasons are : (1) high temporal and spectral X-ray data are very essential for studying the acceleration process of energetic particles associated with solar flares, (2) we have a good heritage of X-ray detectors including a rocket-borne X-ray detector, (3) in the case of developing countries such as India and Czech, solar X-ray spectrometers were selected as their early stage satellite missions due to their poor pointing stabilities, and (4) there is no planned major mission after currently operating Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) mission. Finally, we present a preliminary design of a solar X-ray spectrometer covering soft X-ray (2 keV) to gamma ray (10 MeV).

한국천문연구원 태양영상분광기 개발 (DEVELOPMENT OF KASI SOLAR IMAGING SPECTROGRAPH)

  • 김연한;문용재;조경석;박영득;최성환;장비호;김수진
    • 천문학논총
    • /
    • 제21권2호
    • /
    • pp.51-59
    • /
    • 2006
  • We have successfully developed the KASI (Korea Astronomy and Space Science Institute) Solar Imaging Spectrograph (KSIS), which has been originally upgraded from the KASI solar spectrograph that was able to record solar spectra for a given slit region and to inspect the response function of narrow band filters. A prototype KSIS was developed in 2004 by using a scanning mirror in front of the spectrograph slit and a SBIG ST-8XE CCD camera. Its main disadvantage is that it took a long time (about 13 minutes) to scan a whole active region. In this work, we have upgraded the KSIS by installing a much faster Dalsa 1M15 CCD camera, which gives a data acquisition time of about 2.5 minutes. The software for KSIS was also improved for the new CCD camera on the basis of component-based development method. We have successfully made a test observation for a simple and small active region (AR10910) using the improved KSIS system. Our observations show that H-alpha images for several wavelengths have typical features in a sunspot as well as a H-alpha centerline image is quite similar to a BBSO H-alpha image, demonstrating the capability of the KSIS system.

The Sun Observed by Fast Imaging Solar Spectrograph of the 1.6 meter New Solar Telescope at Big Bear

  • Chae, Jong-Chul;Park, Hyung-Min;Ahn, Kwang-Su;Yang, Hee-Su;Park, Young-Deuk;Nah, Ja-Kyoung;Jang, Bi-Ho;Cho, Kyung-Suk;Cao, Wenda;Gorceix, Nicholas;Goode, Philip R.
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.25-25
    • /
    • 2010
  • With the aim of resolving important physical problems in the chromosphere of the Sun, we developed the Fast Imaging Solar Spectrograph for several years, and at last successfully installed it in the Coude room of the 1.6 meter New Solar Telescope at Big Bear in 2010 May. The instrument is an Echelle spectrograph with imaging capability based on slit scan, and can record two spectral bands (e.g., H alpha band and Ca II 8542 band) simultaneously. The early runs of the instrument produced data of high quality that are suited for the study of quiet Sun, filaments on the disk, prominences outside the limb, active regions and sunspots. We are ready to do good solar sciences using our own instrument, and will be able to do best sciences with the coming improvement of spatial resolution.

  • PDF

The Response of the Solar Chromosphere and Transition Region to a Coronal Rain Event

  • Kwak, Hannah;Chae, Jongchul
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.83.4-84
    • /
    • 2015
  • We report that a strong downflow event caused three-minute oscillations in the solar atmosphere. Our observations were carried out by using the Fast Imaging Solar Spectrograph (FISS) of the 1.6 meter New Solar Telescope (NST) and the Interface Region Imaging Spectrograph (IRIS). Our main findings are as follows: (1) The strong downflow was seen at the $H{\alpha}$ absorption line at first, and then appeared at the Si IV and C II emission lines. It seems that the characteristics of the downflow are consistent with a coronal rain event. (2) After the event, oscillations of velocity were identified in the chromospheric lines and transition region lines. (3) The amplitudes of oscillations were 2km/s at Mg II line and 3km/s at C II and Si IV lines and decreased with time. (4) The period of the oscillation was 2.67 minutes at first, but gradually increased with time. Our findings are in agreement with Chae & Goode (2015)'s theory that of acoustic waves generated by a disturbance in a gravitationally-stratified medium.

  • PDF

NST/FISS Observations of Ellerman bombs and Surges

  • Yang, Heesu;Chae, Jongchul
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.86.2-86.2
    • /
    • 2013
  • Ellerman bombs(EBs) are emission features at the wings of the H alpha spectral line. They are believed to be a kind of a magnetic reconnection feature in the low chromosphere or near photosphere. It was previously reported that surges often occur in association with EBs. However, previous observations were restricted to imaging observation. Using Fast Imaging Solar Spectrograph installed in New Solar Telescope at Big Bear Solar Observatory, California, we observed 5 EBs and associated surges with high-spatial and high-spectral resolutions. In this presentation, we will show the results and discuss the physical properties.

  • PDF

Current Status and Improvement of the Fast Imaging Solar Spectrograph of the 1.6m telescope at Big Bear Solar Observatory

  • 박형민;채종철;송동욱;양희수;장비호;박영득;나자경;조경석;안광수
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.112.2-112.2
    • /
    • 2012
  • For the study of fine-scale structure and dynamics in the solar chromosphere, the Fast Imaging Solar Spectrograph (FISS) was installed in 1.6m New Solar Telescope at Big Bear Solar Observatory in 2010. The instrument, installed at a vertical table of the Coude lab, is properly working and producing data for science. From the analysis of the data, however, we noticed that a couple of problems exist that deteriorate image quality : lower light level and poorer resolution of the CaII band data. After several tests, we found that the relay optics at the right position is crucial role for the spatial resolution of raster-scan images. By using resolution target, we re-aligned relay optics and other components of the spectrograph. Here we present the result of optical test and new data taken by the FISS.

  • PDF