• Title/Summary/Keyword: solar heat system

Search Result 792, Processing Time 0.028 seconds

The Development of Monitoring System for Performance Evaluation of Solar Hot Water Heater (태양열 온수기 성능평가 위한 모니터링 시스템 개발)

  • Kim, Jae-Yeol;Choi, Seung-Hyun;Yang, Dong-Jo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.417-417
    • /
    • 2009
  • The application of solar energy, in the field of alternative energy, was on the increase tendency. In the case of advanced nations, through continuous R&D, solar hot water heater with high efficiency has been used for the house and the industrial process on business, advanced nations were reached up the experimental stage of solar generation system. But, the actual circumstance of the domestic has been not accomplished the popularization of solar hot water heater and the settlement of it which is the fundamental stage of the solar energy usage. This trouble, the domestic was flooded with small enterprise for producing solar hot water heater, was caused by the popularization and the production without verification of performance. To supply the monitoring program for evaluating solar hot water heater, this research was purpose to improve the technical development of the enterprise for producing solar-heat hot-water-boiler and served as an aid for the enlargement and the popularization on solar energy.

  • PDF

Thermodynamic Analysis of an Absorption Heat Pump Heating System with LiBr-Water Solution (2 중효용 흡수식 히트점프의 난방 성능 해석)

  • Won, S.H.;Lee, W.Y.;Chung, H.S.
    • Solar Energy
    • /
    • v.9 no.3
    • /
    • pp.73-80
    • /
    • 1989
  • This paper presents as assessment based on steady-state thermodynamic analysis and computer modeling of a double effect generation absorption heating cycle for solar air-conditioning to find operating temperature ranges. The influences of component temperatures on the heating coefficients of performance and mass flow ratio have been investigated to obtain optimum operating conditions for the proposed air conditioning system. And the single and double effect absorption cycles are compared with each other over the same range of temperatures.

  • PDF

Energy Saving Strategies for Ice Rink using Sea-Water Heat Source Cooling System (해수열원을 이용한 빙상경기장의 에너지절약 방안에 관한 연구)

  • Kim, Samuel;Park, Jin-Young;Park, Jae-Hong
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.53-59
    • /
    • 2014
  • Ice Rink is energy intensive building type. Concern of energy saving from buildings is one of very important issues nowadays. New and renewable energy sources for buildings are especially important when we concern about energy supply for buildings. Among new and renewable energy sources, use of seawater for heating and cooling is an emerging issue for energy conscious building design. The options of energy use from sea water heat sources are using deep sea water for direct cooling with heat exchange facilities, and using surface layer water with heat pump systems. In this study, energy consumptions for an Ice Rink building are analyzed according to the heat sources of air-conditioning systems; existing system and sea water heat source system, in a coastal city, Kangnung. The location of the city Kangnung is good for using both deep sea water which is constant temperature throughout the year less than $2^{\circ}C$, and surface layer water which should be accompanied with heat pump systems. The result shows that using sea water from 200m and 30m under sea lever can save annual energy consumption about 33% of original system and about 10% of that using seawater from 0m depth. Annual energy consumption is similar between the systems with seawater from 200m and 30m. Although the amount of energy saving in summer of the system with 200m depth is higher than that with 30m depth, the requirement of energy in winter of the system with 200m depth is bigger than that with 30m depth.

Development of Energy Efficient Smart Module with Variable Direction of Heat Flow, Heat Capacity and Surface Absorptivity (Thermo-Diode식 태양열 이용 모듈(Smart Module)개발)

  • Lee, K.J.;Chun, W.G.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.119-128
    • /
    • 1998
  • This study has been carried out to develop a thermo-diode system capable of adjusting heat flow direction, solar absorptivity and thermal capacity. What we call "Smart Module" here has emerged from a series of repeated processes involving design, construction and test. In all, it is found that liquid thermo-diode systems are viable in harnessing the sun's energy. The module can be applied for space heating in winter and reduce the cooling load of buildings in summer.

  • PDF

Economic Analysis and Energy Saving Evaluation for Smart Grid System of Hospital Building (병원건물의 스마트그리드시스템의 에너지절약평가 및 경제성분석)

  • Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.129-139
    • /
    • 2010
  • This paper presents a basic energy performance data of microturbine, renewable Energy(BIPV and Solar Collector System) and a hybrid energy system(geothermal system and microturbine) installed in hospital building. The efficiency of solar collector and BIPV system was 30[%], 10[%] individually, and lower than micro turbines. Finally, in energy performance aspect, microturbine and geothermal source heat pump system were a high-efficiency system in hospital building. It is confirmed hybrid energy systems also show the most powerful alternative energy system for green hospital building from the simulation results.

A Study on the optimal length of air cavity for Solar heat removal with Air-Vent System (일사열 배제를 위한 통기벽체 적정 길이에 대한 검토)

  • Kim, Sang-Jin;Kum, Jong-Soo;Choi, Kwang-Hwan;Shin, Byong-Hwan;Chung, Yong-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.2
    • /
    • pp.33-38
    • /
    • 2004
  • Outside wall systems we lost much energy from the dew of thermal bridge and unsuitable adiabatic construction. The air vent wall system can make reduce cooling loads from the outside wall in summer. The basic concept is connected with buoyant force by the difference of density. An external surface of a wall absorbs solar radiation, and transfers it to the air in the cavity. The warmed air gets buoyant force. So the warmed air is released through the top opening and cooler outside air replaces the space in the cavity. So because of the cavity and the openings, the cooling load reduction by natural ventilation is believed to be considerable. The purpose of this study is finding optimal length of air cavity by numerical analyses.

An Experimental Study on Thermal and Electrical Performance of an Air-type PVT Collector (실험에 의한 공기식 PVT 컬렉터의 열·전기 성능에 관한 연구)

  • Kim, Sang-Myung;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.2
    • /
    • pp.23-32
    • /
    • 2019
  • PVT (Photovoltaic/thermal) system is technology that combines PV and solar thermal collector to produce and use both solar heat and electricity. PVT has the advantage that the energy production per unit area is higher than any single use of PV or solar thermal energy systems because it can produce and use heat and electricity simultaneously. Air-type PVT collectors use air as the heat transfer medium, and the air flow rate and flow pattern are important factors affecting the performance of the PVT collector. In this study, a new air-type PVT collector with improved thermal performance was designed and manufactured. And then thermal and electrical performance and characteristics of air-type PVT collector were analyzed through experiments. For the thermal performance analysis of the PVT collector, the experiment was conducted under the test conditions of ISO 9806:2017 and the electrical performance was analyzed under the same conditions. As a result, the thermal efficiency increased to 26~45% as the inlet flow rate of PVT collector increased from $60{\sim}200m^3/h$. Also, it was confirmed that the air-type PVT collector prevents the PV surface temperature rise according to the operating conditions.

Freeze Protection for Passive Solar Water Heating System (자연순환형 태양열온수기 동파방지기술)

  • Kim, Jong-Hyun;Hong, Hi-Ki;Chung, Jae-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.327-333
    • /
    • 2011
  • In the present work, a new freeze protection method has been proposed for a natural circulation system of solar water heater. Though electrothermal wire is popularly used for the purpose, there are freezing troubles by wire cut-off and shortage of excessive electric power consumption. In the experimental device, hot water in storage tank was used to heat the outlet pipe from the tank if the pipe surface temperature falls lower than a set point. The cold water pipe to the storage tank was installed to directly contact the hot water pipe surface temperature rose by transferred heat.

A Study on latent heat storage system with Solar heat(Part 1. Development of PCM modeling) (태양열을 이용하는 잠열축열 시스템에 관한 연구(제1보 PCM 계산 모델의 개발))

  • Ku, H.G.;Kim, J.R.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.4
    • /
    • pp.47-54
    • /
    • 2001
  • This study has been conducted to verify the possibility of adaptation of a latent storage type air-conditioning system, shifting the peak load of electronic power to a building. In this paper, an energy equation to evaluate performance of PEM(phase change material) has been suggested and solved, after discretization. As a result, it is confirmed that the results from the energy equation are correspond with those from present studies to analysis of one-dimensional solidification and to analysis of two-dimensional solidification.

  • PDF

Experimental Study on the Thermal Performance of a Loop-Type Bidirectional Thermo-Diode System (루프형 양방향 열 다이오드 시스템의 열 성능에 관한 실험적 연구)

  • Chun, Won-Gee;Kim, Sin
    • Solar Energy
    • /
    • v.18 no.2
    • /
    • pp.105-113
    • /
    • 1998
  • In general, the thermo-diode is a device designed to allow heat to be transferred only in one direction. However, the bidirectional thermo-diode devised to change the heat flow in the desired direction can be used for the reduction of the heating load in winter as well as the cooling load in summer. In this study, a solar heating system using loop-type bidirectional thermo-diodes is designed and set up, also it is successfully applied to an outdoor test cell for the verification of its usefulness.

  • PDF