• Title/Summary/Keyword: solar fuel

Search Result 392, Processing Time 0.031 seconds

Study on Economic Analysis of Offshore and Ground-mounted Solar Photovoltaics (해상과 지상 태양광 발전 경제성 비교에 관한 연구)

  • Kyu-Won Hwang;Moon Suk Lee;Chul-Yong Lee
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.38-51
    • /
    • 2024
  • The rapid expansion of industrialization and population growth worldwide has led to a significant surge in energy demand, perpetuating heavy reliance on finite fossil fuel reserves. Although prevailing policies primarily target ground-mounted solar photovoltaics, there is a noticeable increase in the adoption of floating solar power generation systems on water surfaces. Nonetheless, adequate studies and legislative reviews on offshore solar photovoltaics in Korea are lacking. The absence of well-defined criteria for the economic analysis of floating solar photovoltaics presents hurdles to their economic feasibility. This study conducted a comprehensive cost-benefit analysis of offshore photovoltaics to evaluate their economic viability and compared four types of solar photovoltaics based on the operating area and technology: ground-mounted, floating on inland water, pontoon-based offshore, and flexible system offshore. Perspectives from both central and local government entities, emphasizing social aspects, as well as inputs from private companies with a financial focus were considered. The findings revealed variations in economic viability depending on the operating area and technology employed. This study aims to contribute to the advancement of market maturity and technology within the realm of offshore solar photovoltaics.

Study of Flooding Prevention on Cathode Gas Diffusion Layer for Dynamic Load Fuel Cell

  • Choi, Dong-Won;You, Jin-Kwang;Rokhman, Fatkhur;Bakhtiar, Agung;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.270-273
    • /
    • 2011
  • Water management is important in proton exchange membrane fuel cell because the water balance has a significant impact on the overall fuel cell system performance. In fuel cell vehicle, the vehicle's power demand is dynamic; therefore, the dynamic water management system is required. This present study proposes a method to control the humidity of the input air in cathode side of the fuel cell vehicle. The simulation using several driving cycles shows the proposed air humidification control obtains a relatively good result. The liquid saturation level is seen constant at the target level although still there are small deviations at driving cycles which having averagely high power demands.

  • PDF

Heating Efficiency of Difference Heat Collection Methods for Greenhouse (유리온실의 태양열 집열방법별 집열효과)

  • 최영하;이재한;권준국;박동금;이한철
    • Journal of Bio-Environment Control
    • /
    • v.9 no.3
    • /
    • pp.166-170
    • /
    • 2000
  • Three methods for heat collection, which were the flat solar collector, two fan with radiator, and square pipe method, were studied to sue efficiently solar energy in the three different glasshouses for two years. The flat plate solar collector method was made use of the commercial solar collector with collection area of 24$m^2$, the method of two fans with radiators collected solar energy at the top of the glasshouse. An thermal storage tank was constructed underneath in teach glasshouses. When an area of 1,000$m^2$ was heated to the minimum temperature of 9$^{\circ}C$, the decrease rate of heating fuel for the flat plate solar collector, the fan attached radiator and the square pipe methods were 7%, 19% and 28% respectively. The flat plate solar collector method, which could be heated approximately 40-50$m^2$, was currently used by most of the farmer. Under the condition, the decrease rate of annual heating fuel was 14% which was not better for an economic annual heating fuel. If the fan with radiator method was operated, the use of installation and maintenance were required. So, it could not be good economic efficiency of solar heating. The heating efficiency of the square pipe method was relatively better thant those of the flat plate solar collector or the fan attached radiator. Since the cost of materials and its installation of the use of square pipe method was lower than any other method. However, corrosion of the pipe, greater shade in the greenhouse and strength against the square pipe were problems that should be overcome in the square pipe method.

  • PDF

Analysis on Characteristics of Thermal Flow for Heating Indoor Space by Air-heating Collector using Solar Heat (태양열 공기가열 집열기에 의한 난방 실내공간의 열유동 특성 해석)

  • Yang, Young-Joon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_2
    • /
    • pp.271-278
    • /
    • 2022
  • The solar energy has been widely used to reduce the fossil fuel and prevent the environmental pollution. The renewable energy including solar heat tends to spread due to carbon neutrality for main country of the world. Targets of solar collector are usually acquisitions of hot water or hot air. Especially, air-heating collector using solar heat is known as the technology for obtaining hot air. This study aims to investigate of characteristics of thermal flow when the hot air by air-heating collector using solar heat flows inside of indoor space. The thermal flow of heating indoor space was simulated using ANSYS-CFX program and thus the behaviors of hot air in indoor space were evaluated with standard k-𝜀 turbulence model. As the results, as the inlet velocity was increased, the behaviors of hot air became simple, and temperature range of 25~75℃ had almost no effect on behavior of flow. As the inlet temperature was increased, the temperature curve of indoor space from bottom to top was changed from linear to quadratic. Furthermore, it was confirmed that inlet velocity as well as inlet temperature also should be considered to heat indoor space equally by air-heating collector using solar heat.

A Research for Energy Harvest/Distribution/Control of HALE UAV based on the Solar Energy (태양 일조량 변화에 따른 HALE UAV의 동력 수집/분배/제어 특성 연구)

  • Nam, Yoonkwang;Park, To Soon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.77-84
    • /
    • 2015
  • Recently, as the needs for eco-friendly aero propulsion system increase gradually, many study works have been conducted to develop the hybrid propulsion system for High Altitude Long Endurance(HALE) UAV. In this study, we analyzed both suitable energy distribution and management methodology among the total energy collected from solar cell and the total required energy of aerial vehicle and required energy of the regenerative fuel cell(RFC) for driving in the night time and optimized the energy balance mechanism based on the ascribed mission profile.

Photoelectrochemical Water Oxidation and $CO_2$ Conversion for Artificial Photosynthesis

  • Park, Hyunwoong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.70-70
    • /
    • 2013
  • As the costs of carbon-footprinetd fuels grow continuously and simultaneously atmospheric carbon dioxide concentration increases, solar fuels are receiving growing attention as alternative clean energy carriers. These fuels include molecular hydrogen and hydrogen peroxide produced from water, and hydrocarbons converted from carbon dioxide. For high efficiency solar fuel production, not only light absorbers (oxide semiconductors, Si, inorganic complexes, etc) should absorb most sunlight, but also charge separation and interfacial charge transfers need to occur efficiently. With this in mind, this talk will introduce the fundamentals of solar fuel production and artificial photosynthesis, and then discuss in detail on photoelectrochemical (PEC) water splitting and CO2 conversion. This talk largely divides into two section: PEC water oxidation and PEC CO2 reduction. The former is very important for proton-coupled electron transfer to CO2. For this oxidation, a variety of oxide semiconductors have been tested including TiO2, ZnO, WO3, BiVO4, and Fe2O3. Although they are essentially capable of oxidizing water into molecular oxygen, the efficiency is very low primarily because of high overpotentials and slow kinetics. This challenge has been overcome by coupling with oxygen evolving catalysts (OECs) and/or doping donor elements. In the latter, surface-modified p-Si electrodes are fabricated to absorb visible light and catalyze the CO2 reduction. For modification, metal nanoparticles are electrodeposited on the p-Si and their PEC performance is compared.

  • PDF

Energy Balance and Constraints for the Initial Sizing of a Solar Powered Aircraft (태양광 추진 항공기의 초기 사이징을 위한 에너지 균형 및 구속조건 연구)

  • Hwang, Ho-Yon;Nam, Tae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.523-535
    • /
    • 2012
  • Solar powered aircraft are becoming more and more interesting for future long endurance missions at hight altitudes, because they could provide surveillance, earth monitoring, telecommunications, etc. without any atmospheric pollution and hopefully in the near future with competitive costs compared with satellites. However, traditional aircraft sizing methods currently employed in the conceptual design phase are not immediately applicable to solar powered aircraft. Hence, energy balance and constraint analyses were performed to determine how various power system components effect the sizing of a solar powered long endurance aircraft. The primary power system components considered in this study were photovoltaic (PV) modules for power generation and regenerative fuel cells for energy storage. To verify current research results, these new sizing methods were applied to HALE aircraft and results were presented.

A Study for Correlativity of Hydrogen Production Using Artificial Luminous Intensity (인공조도를 이용한 수소발생량과의 상관성에 관한 연구)

  • Jung, You-Ra;Hong, Chang-Woo;Choi, Young-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.218-221
    • /
    • 2010
  • This paper presents energy efficiency about an electrolyser which is related with the hybrid system of solar cell and fuel cell for using the system more fully. The water electrolyser is the exact reverse of a hydrogen fuel cell; it produces gaseous hydrogen and oxygen from water. Electrolyser technology may be implemented at a variety of scales wherever there is an electricity supply to provide hydrogen and/or oxygen for virtually any requirement. Also, this paper shows optimum operating point in the electrolyser for saving cost of the electrical energy with hybrid system.

Study on Air Humidification Control Method for Fuel Cell Vehicles (연료전지 차량을 위한 공기가습 조절법에 대한 연구)

  • Bakhtiar, Agung;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.91-98
    • /
    • 2011
  • 연료전지 차랑용에 있어서 공기 가습 및 감습의 중요성은 매우 크다. 특히 PEM(Proton Exchange Membrane)연료전지에서 수분평형은 총괄시스템성능에 큰 영향을 미치는 요소인데, 이에 관한 중요한 연구가 지금까지 광범위하게 수행되고 있다. 또한 차량과 같이 동적부하 연료전지를 활용하는 분야에 있어서, 전류의 흐름은 차량용 파워 부하에 크게 영향을 받는다. 따라서 전기적 흐름이 발생하면, 이에 따라 수분이 발생하게 되는데, 이러한 응축 수분은 예측이 되며, 수관리 시스템에서 이를 중요한 제어 기준으로 활용한다. 그러므로 적절한 제어방법을 선택하면 유입공기의 온도와 습도의 최적값을 얻을 수 있다. 따라서, 본 논문에서는 PEM 연료전지의 수관리를 위하여 수분전달 모델과 유전알고리즘(genetic algorithm)을 사용하는 제어방법에 초점을 두고 있다.

Heating Characteristics of Ondol using Heat Pump-Latent Heat Storage System (열펌프-잠열축열시스템을 이용한 온돌의 난방특성)

  • Kim, M.H.;Song, H.K.
    • Solar Energy
    • /
    • v.20 no.3
    • /
    • pp.1-9
    • /
    • 2000
  • In these days the hot water circulating Ondol using the fossil fuel boiler is the heating system for the most of the Korean residents. Then it is installed without the heat storage medium in the Ondol heating layer, but the Korean traditional Ondol had been composed with the heat storage medium. The Ondol room without heat storage medium could not be comfortable because the room air temperature is not only changed unstably but also it has a defect too much fuel consumption. Therefore in this study the heat pump-latent heat storage Ondol as the new type of Ondol system was developed to solve these problems mentioned above, and the COP of the heat pump (Coefficient Of Performance), the latent heat storage characteristics in the new type of Ondol system and the temperature variation in the Ondol room with the ambient temperature were analyzed.

  • PDF