• Title/Summary/Keyword: solar energy production

Search Result 440, Processing Time 0.026 seconds

An Impact Assessment on Atmospheric Dispersion of Pesticide using AGDISP Model (AGDISP모델을 이용한 농약의 대기확산 영향평가)

  • Kim, Jeong-Hwan;Koo, Youn-Seo;Lee, Seung-Hoon
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.547-556
    • /
    • 2013
  • Recently, golf courses have increased over the years because golf became popular leisure sport. Various environmental problems have been then issued by a golf course during constructing and running them. A problem of pesticide, which is serious among various environmental problems, from golf course has harmful effect on surrounding area and makes human suffer from acute and chronic diseases. Pesticides are used for the cost-effective managing of golf course and the amount of pesticides also increases as the number of golf course increase. Since the assessment of pesticides on near-by surrounding has been focused on water and soil media, studies related to atmospheric dispersion have been hardly attempted. The method to assess an impact of pesticide nearby agricultural production by the atmospheric dispersion using AGDISP(AGricultural DISPersal) model was developed and applied to the actual planned golf course located in Hongcheon, Gangwon. For implementing AGDISP, parameters were investigated from the golf course's land use planning map, pesticide spray device, Hong-Cheon weather station and etc. First of all, a kind of pesticide, a form of spraying pesticide, geographical features, weather data, and distance(golf course to plantation) were investigated to understand how to work these parameters in AGDISP. Restricted data(slope angle, droplet size distribution and solar insolation) sensitivity analysis of these parameters to estimate effect of pesticide nearby a plantation and a high relative contribution data of analyzed data was selected for input data. Ethoprophos was chosen as the pesticide used in the golf course and the amounts of pesticide deposition per annual agricultural productions were predicted. The results show that maximum amount of pesticide deposition through atmospheric dispersion was predicted $2.32{\mu}/m^2$ at 96 m where the nearest organic plantation exists. The residues of pesticide were also estimated based on the annul production of the organic and the deposition amount of the pesticide. Consequently, buckwheat, wheat and millet were likely to exceed maximum residue limits for pesticides in foods(MRL) and sorghum, corn and peanut were likely to exceed MRL by organic farming as well.

Life Cycle Environmental Analysis of Valuable Metal (Ag) Recovery Process in Plating Waste Water (폐도금액내 유가금속(Ag) 회수 공정에 대한 전과정 환경성 분석)

  • Da Yeon Kim;Seong You Lee;Yong Woo Hwang;Taek Kwan Kwon
    • Resources Recycling
    • /
    • v.32 no.2
    • /
    • pp.12-18
    • /
    • 2023
  • In 2018, the demand for silver (referred to as Ag) in the electrical and electronics sector was 249 million tons. The demand stood at 81 million tons in the solar module production sector. Currently, due to the rapid increase in solar module installation, the demand for silver is increasing drastically in Korea. However, Korea's natural metal resources and reserves are insufficient in comparison to their consumption, and the domestic silver ore self-sufficiency rate was as low as 2.2% as of 2021. This implies that a recycling technology is necessary to recover valuable metal resources contained in the waste plating solution generated in the metal industry. Therefore, this study compared and analyzed, the results of the impact evaluation through life cycle assessment according to an improvement in the process of recovery of valuable metals in the waste plating solution. The process improvement resulted in reducing GWP (Global Warming Potential) and ADP(Abiotic Depletion Potential) by 50% and 67%, respectively. The GWP of electricity and industrial water was reduced by 98% and 93%, respectively, which significantly contributed to the minimization of energy and water consumption. Thus, the improvement in recycling technology has a high potential to reduce chemical and energy use and improve resource productivity in the urban mining industry.

An Atmospheric Numerical Simulation for Production of High Resolution Wind Map on Land and A Estimation of Strong Wind on the ground (고해상도 육상바람지도 구축을 위한 기상장 수치모의 및 지상강풍 추정)

  • Jung, Woo-Sik;Lee, Hwa-Woon;Park, Jong-Kil;Kim, Hyun-Goo;Kim, Dong-Hyuk;Choi, Hyo-Jin;Kim, Min-Jeong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.145-149
    • /
    • 2009
  • High-resolution atmospheric numerical system was set up to simulate the motion of the atmosphere and to produce the wind map on land. The results of several simulations were improved compare to the past system, because of using the fine geographical data, such as terrain height and land-use data, and the meteorological data assimilation. To estimate surface maximum wind speed when a typhoon is expected to strike the Korea peninsula, wind information at the upper level atmosphere was applied. Using 700hPa data, wind speed at the height of 300m was estimated, and surface wind speed was estimated finally considering surface roughness length. This study used formula from other countries and estimated RMW but RMW estimation formula apt to Korea should be developed for future.

  • PDF

Understanding of Polymer Electrolyte Membrane for a Unitized Regenerative Fuel Cell (URFC) (일체형 재생 연료전지(URFC)용 고분자 전해질 막의 이해)

  • Jung, Ho-Young
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.125-132
    • /
    • 2011
  • A unitized regenerative fuel cell (URFC) as a next-generation fuel cell technology was considered in the study. URFC is a mandatory technology for the completion of the hybrid system with the fuel cell and the renewable energy sources, and it can be expected as a new technology for the realization of hydrogen economy society in the $21^{st}$ century. Specifically, the recent research data and results concerning the polymer electrolyte membrane for the URFC technology were summarized in the study. The prime requirements of polymer electrolyte membrane for the URFC applications are high proton conductivity, dimensional stability, mechanical strength, and interfacial stability with the electrode binder. Based on the performance of the polymer electrolyte membrane, the URFC technology combining the systems for the production, storage, utilization of hydrogen can be a new research area in the development of an advanced technology concerning with renewable energy such as fuel cell, solar cell, and wind power.

Transportable House with Hybrid Power Generation System (하이브리드 발전 시스템을 적용한 이동식 하우스)

  • Mi-Jeong Park;Jong-Yul Joo;Eung-Kon Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.205-212
    • /
    • 2023
  • In the modern society, the extreme weather caused by climate change has brought about exceptional damage in succession over the world due to the use of fossil fuels, and infectious diseases such as COVID-19 worsen the quality of human life. It is urgently necessary to reduce green-house gas and use new renewable energy. The global environmental pollution should be decreased by reducing the use of fossil fuels and using new renewable energy. This paper suggests a system which can function for the environment of four seasons, safety and communication, through the photovoltaic power-based intelligent CCTV, internet and WiFi, and cooling and heating systems, and can optimally manage power, through the real-time monitoring of the production and the consumption of the photovoltaic power. It suggests a hybrid generation system supporting diesel generation without discontinuation in the case of emergency such as system power outage caused by cold waves, typhoons and natural disasters in which the photovoltaic power generating system cannot be used.

Numerical and statistical analysis of Newtonian/non-Newtonian traits of MoS2-C2H6O2 nanofluids with variable fluid properties

  • Manoj C Kumar;Jasmine A Benazir
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.341-352
    • /
    • 2024
  • This study investigates the heat and mass transfer characteristics of a MoS2 nanoparticle suspension in ethylene glycol over a porous stretching sheet. MoS2 nanoparticles are known for their exceptional thermal and chemical stability which makes it convenient for enhancing the energy and mass transport properties of base fluids. Ethylene glycol, a common coolant in various industrial applications is utilized as the suspending medium due to its superior heat transfer properties. The effects of variable thermal conductivity, variable mass diffusivity, thermal radiation and thermophoresis which are crucial parameters in affecting the transport phenomena of nanofluids are taken into consideration. The governing partial differential equations representing the conservation of momentum, energy, and concentration are reduced to a set of nonlinear ordinary differential equations using appropriate similarity transformations. R software and MATLAB-bvp5c are used to compute the solutions. The impact of key parameters, including the nanoparticle volume fraction, magnetic field, Prandtl number, and thermophoresis parameter on the flow, heat and mass transfer rates is systematically examined. The study reveals that the presence of MoS2 nanoparticles curbs the friction between the fluid and the solid boundary. Moreover, the variable thermal conductivity controls the rate of heat transfer and variable mass diffusivity regulates the rate of mass transfer. The numerical and statistical results computed are mutually justified via tables. The results obtained from this investigation provide valuable insights into the design and optimization of systems involving nanofluid-based heat and mass transfer processes, such as solar collectors, chemical reactors, and heat exchangers. Furthermore, the findings contribute to a deeper understanding of stretching sheet systems, such as in manufacturing processes involving continuous casting or polymer film production. The incorporation of MoS2-C2H6O2 nanofluids can potentially optimize temperature distribution and fluid dynamics.

Relationship between Light Environment and Crop Growth under Various Nitrogen Application Rates Condition in Rice Plant Canopy (질소(窒素) 시비수준(施肥水準)에 따른 벼 군락내(群落內) 광환경변화(光環境變化)와 생육(生育)과의 관계(關係)에 관(關)한 연구(硏究))

  • Lee, Jeong-Taek;Kazuo, Kobayashi
    • Korean Journal of Environmental Agriculture
    • /
    • v.8 no.2
    • /
    • pp.128-135
    • /
    • 1989
  • To find the effects of solar energy into the rice canopy and its balance on the rice plant growth, a Tongil type rice, Raekyeong and a japonica rice, Koganebare were used with four levels of nitrogen fertilizer application, 6, 10, 14, and 18kg $l0a^{-1}$ in Chigugo, Japan. The micrometerosological data, the solar radiation and absorbed solar radiation by the rice plants, and leaf area index on cardinal growth stage of the rice community were measured. The results are as follows : Raekyeong showed increased LAI by increased nitrogen fertilizer application rates, and larger LAI than Koganebear. 1. There was no difference in total dry weight till 20 days after transplanting regardless of nitrogen levels in the same variety, after that, however, Raekyeong showed higher dry matter productions for the same durations than Koganebare. 2. In early growth stage of transplanting rice, reflection ratio of solar radiation above the crop canogy was about 6%, however, it was increased up to 20% by the increased LAI at heading date. 3. In high levels of nitrogen application plots, LAI were increased so that values were decreased. 4. Relationship between the amount of absorbed radiation by plants and its dry matter production was linearly significant. Higher levels of nitrogen application produced higher dry matter in Raekyeong, however, in lower level, the dry matter production pattern was almost similar between both rice cultivars.

  • PDF

Battery Level Calculation and Failure Prediction Algorithm for ESS Optimization and Stable Operation (ESS 최적화 및 안정적인 운영을 위한 배터리 잔량 산출 및 고장 예측 알고리즘)

  • Joo, Jong-Yul;Lee, Young-Jae;Park, Kyoung-Wook;Oh, Jae-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.71-78
    • /
    • 2020
  • In the case of power generation using renewable energy, power production may not be smooth due to the influence of the weather. The energy storage system (ESS) is used to increase the efficiency of solar and wind power generation. ESS has been continuously fired due to a lack of battery protection systems, operation management, and control system, or careless installation, leading to very big casualties and economic losses. ESS stability and battery protection system operation management technology is indispensable. In this paper, we present a battery level calculation algorithm and a failure prediction algorithm for ESS optimization and stable operation. The proposed algorithm calculates the correct battery level by accumulating the current amount in real-time when the battery is charged and discharged, and calculates the battery failure by using the voltage imbalance between battery cells. The proposed algorithms can predict the exact battery level and failure required to operate the ESS optimally. Therefore, accurate status information on ESS battery can be measured and reliably monitored to prevent large accidents.

Organic-inorganic Nanocomposite Adhesive with Improved Barrier Property to Water Vapor for Backsheets of Photovoltaic Modules (태양광모듈용 저가형 백시트 제조를 위한 고수분차단성 유무기 나노복합형 접착제)

  • Hwang, Jin Pyo;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.530-537
    • /
    • 2015
  • Photovoltaic (PV) modules are environmentally energy conversion devices to generate electricity via photovoltaic effect of semiconductors from solar energy. One of key elements in PV modules is "Backsheet," a multilayered barrier film, which determines their lifetime and energy conversion efficiency. The representative Backsheet is composed of chemically resistant poly(vinyl fluoride) (PVF) and cheap poly(ethylene terephthalate) (PET) films used as core and skin materials, respectively. PVF film is too expensive to satisfy the market requirements to Backsheet materials with production cost as low as possible. The promising alternatives to PVF-based Backsheet are hydrocarbon Backsheets employing semi-crystalline PET films instead of PVF film. It is, however, necessary to provide improved barrier property to water vapor to the PET films, since PET films are suffering from hydrolytic decomposition. In this study, a polyurethane adhesive with reduced water vapor permeation behavior is developed via a homogeneous distribution of hydrophobic silica nanoparticles. The modified adhesive is expected to retard the hydrolysis of PET films located in the core and inner skin. To clarify the efficacy of the proposed concept, the mechanical properties and electrochemical PV performances of the Backsheet are compared with those of a Backsheet employing the polyurethane adhesive without the silica nanoparticles, after the exposure under standard temperature and humidity conditions.

Relationship Analysis of Reference Evapotranspiration and Heating Load for Water-Energy-Food Nexus in Greenhouse (물-에너지-식량 넥서스 분석을 위한 시설재배지의 기준작물증발산량과 난방 에너지 부하 관계 분석)

  • Kim, Kwihoon;Yoon, Pureun;Lee, Yoonhee;Lee, Sang-Hyun;Hur, Seung-Oh;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.23-32
    • /
    • 2019
  • Increasing crop production with the same amount of resources is essential for enhancing the economy in agriculture. The first prerequisite is to understand relationships between the resources. The concept of WEF (Water-Energy-Food) nexus analysis was first introduced in 2011, which helps to interpret inter-linkages among the resources and stakeholders. The objective of this study was to analyze energy-water nexus in greenhouse cultivation by estimating reference evapotranspiration and heating load. For the estimation, this study used the physical model to simulate the inside temperature of the agricultural greenhouse using heating, solar radiation, ventilated and transferred heat losses as input variables. For estimating reference evapotranspiration and heating load, Penman-Monteith equation and seasonal heating load equation with HDH (Heating Degree-Hour) was applied. For calibration and validation of simulated inside temperature, used were hourly data observed from 2011 to 2012 in multi-span greenhouse. Results of the simulation were evaluated using $R^2$, MAE and RMSE, which showed 0.75, 2.22, 3.08 for calibration and 0.71, 2.39, 3.35 for validation respectively. When minimum setting temperature was $12^{\circ}C$ from 2013 to 2017, mean values of evapotranspiration and heating load were 687 mm/year and 2,147 GJ/year. For $18^{\circ}C$, Mean values of evapotranspiration and heating load were 707 mm/year and 5,616 GJ/year. From the estimation, the relationship between water and heat energy was estimated as 1.0~2.6 GJ/ton. Though additional calibrations with different types of greenhouses are necessary, the results of this study imply that they are applicable when evaluating resource relationship in the greenhouse cultivation complex.