• Title/Summary/Keyword: solar energy production

Search Result 439, Processing Time 0.03 seconds

Preparation of WO3 by using sol-gel method for photoelectrode and its application for PEC cell (물분해로부터 수소 제조를 위한 광촉매용 텅스텐 산화물 박막 제조)

  • Hong, Eun-Mi;Im, Dong-Chan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.101-101
    • /
    • 2015
  • Photoelectrochemical water splitting is considered as a promising method of transforming solar energy into chemical energy stored in the type of hydrogen. An n-type $WO_3$ semiconductor is one of the most promising photoanodes for hydrogen production from water splitting. Films annealed at lower temperatures consisted of amorphous, whereas films annealed above $500^{\circ}C$ comprised solely of monoclinic $WO_3$. In this study, we observed photoactivity of $WO_3$ as increasing thickness of $WO_3$. And it shows good photoacivity as thickness increases. Also we tried to improve photoactivity through surface modification and bulk modification by using hydrogen treatment and conducting polymer. The photocurrent was measured in potentiostatic method with the three electrode system. A Pt wire and Ag / AgCl electrode were used as the counter electrode and the reference electrode, respectively. photocurrent-time (I-T) curve was measured at a bias potential of 0.79 V.

  • PDF

Review of the Silicon Oxide and Polysilicon Layer as the Passivated Contacts for TOPCon Solar Cells

  • Mengmeng Chu;Muhammad Quddamah Khokhar;Hasnain Yousuf;Xinyi Fan;Seungyong Han;Youngkuk Kim;Suresh Kumar Dhungel;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.233-240
    • /
    • 2023
  • p-type Tunnel Oxide Passivating Contacts (TOPCon) solar cell is fabricated with a poly-Si/SiOx structure. It simultaneously achieves surface passivation and enhances the carriers' selective collection, which is a promising technology for conventional solar cells. The quality of passivation is depended on the quality of the tunnel oxide layer at the interface with the c-Si wafer, which is affected by the bond of SiO formed during the subsequent annealing process. The highest cell efficiency reported to date for the laboratory scale has increased to 26.1%, fabricated by the Institute for Solar Energy Research. The cells used a p-type float zone silicon with an interdigitated back contact (IBC) structure that fabricates poly-Si and SiOx layer achieves the highest implied open-circuit voltage (iVoc) is 750 mV, and the highest level of edge passivation is 40%. This review presents an overview of p-type TOPCon technologies, including the ultra-thin silicon oxide layer (SiOx) and poly-silicon layer (poly-Si), as well as the advancement of the SiOx and poly-Si layers. Subsequently, the limitations of improving efficiency are discussed in detail. Consequently, it is expected to provide a basis for the simplification of industrial mass production.

Analysis on the Effects of Building Coverage Ratio and Floor Space Index on Urban Climate (도시의 건폐율 및 용적률이 도시기후에 미치는 영향 분석)

  • Yeo, In-Ae;Yee, Jurng-Jae;Yoon, Seong-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.3
    • /
    • pp.19-27
    • /
    • 2009
  • In this study, Urban Climate Simulation was performed by 3-Dimensional Urban Canopy Model. The characteristics of urban climate were analyzed combining artificial land coverage, building size, heat production from the air conditioning and topographic conditions as physical variables which affects urban climate characteristics. The results are as follows. (1) The aspects of the urban climatal change is derived to be related to the combination of the building coverage ratio, building height and shading area. According to the building height, the highest temperature was increased by $2.1^{\circ}C$ from 2-story to 5-story building and the absolute humidity by 2.1g/kg maximum and the wind velocity by 1.0m/s was decreased from 2-story to 20-story building. (2) Whole heat generation was influenced by the convective sensible heat at the lower building height and by the artificial heat generation at the higher one over 20-story building influence to some extent of the building coverage ratio. The effect of the altitude is not more considerable than the other variables as below $1^{\circ}C$ of the air temperature. In the last, deriving the combination of building coverage and building height is needed to obtain effectiveness of the urban built environment planning at the point of the urban climate. These simulation results need to be constructed as DB which shows urban quantitative thermal characters by the urban physical structure. These can be quantitative base for suggesting combinations of the building and urban planning features at the point of the desirable urban thermal environment as well as analyzing urban climate phenomenon.

Wind Speed Prediction in Complex Terrain Using a Commercial CFD Code (상용 CFD 프로그램을 이용한 복잡지형에서의 풍속 예측)

  • Woo, Jae-Kyoon;Kim, Hyeon-Gi;Paek, In-Su;Yoo, Neung-Soo;Nam, Yoon-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.8-22
    • /
    • 2011
  • Investigations on modeling methods of a CFD wind resource prediction program, WindSim for a ccurate predictions of wind speeds were performed with the field measurements. Meteorological Masts having heights of 40m and 50m were installed at two different sites in complex terrain. The wind speeds and direction were monitored from sensors installed on the masts and recorded for one year. Modeling parameters of WindSim input variables for accurate predictions of wind speeds were investigated by performing cross predictions of wind speeds at the masts using the measured data. Four parameters that most affect the wind speed prediction in WindSim including the size of a topographical map, cell sizes in x and y direction, height distribution factors, and the roughness lengths were studied to find out more suitable input parameters for better wind speed predictions. The parameters were then applied to WindSim to predict the wind speed of another location in complex terrain in Korea for validation. The predicted annual wind speeds were compared with the averaged measured data for one year from meteorological masts installed for this study, and the errors were within 6.9%. The results of the proposed practical study are believed to be very useful to give guidelines to wind engineers for more accurate prediction results and time-saving in predicting wind speed of complex terrain that will be used to predict annual energy production of a virtual wind farm in complex terrain.

A Study on the Power Factor Improvement of V47-660 kW Wind Turbine Generation System in Jeju Wind Farm (제주 풍력발전 단지의 V47-660 kW 시스템의 역률개선에 관한 연구)

  • Kim, Eel-Hwan;Jeon, Young-Jin;Kim, Jeong-Woong;Kang, Geong-Bo;Huh, Jong-Chul;Kim, Gun-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.45-53
    • /
    • 2003
  • This paper presents a study on the power factor improvement of V47- 660 [kW] Wind Turbine Generation System (WTGS) in Jeju wind farm, as a model system in this paper. In this system, the power factor correction is controlled by the conventional method with power condensor banks. Also, this system has only four bank steps, and each one capacitor bank step is cut in every one second when the generator has been cut in. This means that it is difficult to compensate the reactive power exactly according to the variation of them. Actually, model system has very low power factor in the area of low wind speed, which is almost from 4 to 6 [m/s]. This is caused by the power factor correction using power condenser bank. To improve the power factor in the area of low wind speed, we used the static var compensator(SVC) using current controlled PWM power converter using IGBT switching device. Finally, to verify the proposed method, the results of computer simulation using Psim program are presented to support the discussions.

Study on Flow Characteristics in an Augmentation Channel of a Direct Drive Turbine for Wave Power Generation Using CFD

  • Prasad, Deepak;Zullah, Mohammed Asid;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.630-631
    • /
    • 2009
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Apart from wind and solar, ocean holds tremendous amount of untapped energy in forms such as geothermal vents, tides and waves. The current study looks at generating power using waves and the focus is on the primary energy conversion (first stage conversion) of incoming waves for two different models. Observation of flow characteristics, pressure and the velocity in the augmentation channel as well as the front guide nozzle are presented in the paper. A numerical wave tank was utilized to generate waves of desired properties and later the turbine section was integrated. The augmentation channel consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. The analysis was performed using the commercial CFD code.

  • PDF

A Feasibility Study on Geothermal Power Plant in Korea (한국형 지열발전 타당성 연구)

  • Lim, Hyo-Jae;Kwon, Jung-Tae;Kim, Geum-Soo;Chang, Ki-Chang
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.39-44
    • /
    • 2009
  • Geothermal energy is the heat contained in the earth and its internal fluids. Geothermal energy is stored as sensible or latent heat. Supplied by both internal and external sources, it represents a vast supply which is only started to be tapped for generation of electric power. In general, this is natural dry or wet medium to high enthalpy steam at temperatures above $150^{\circ}C$. For some time, binary systems employing substances with a lower boiling point than water in a secondary circuit have been used to generate vapor for driving turbines at a lower temperature level. The utilization of binary plants and the possibility of production from enhanced geothermal systems can expand its availability on a worldwide basis. The geothermal electricity installed capacity is approaching the 10,000GW threshold. Geothermal energy is not present everywhere, but its baseload capability is a very important factor for its success.

  • PDF

Life Cycle Assessment of CdTe Photovoltaic System (CdTe 태양광 발전 시스템의 전과정평가)

  • Kim, Yeunhee;Huh, Jinho;Jeong, Jaewoo;Kang, Jeongrim;Choi, Jongdoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.54.1-54.1
    • /
    • 2011
  • The conventional energy-production system by burning fossil fuels releases many pollutants and carbon dioxide($CO_2$) to the environment. Therefore, many countries pay attention to new and renewable energy and invest in the development of these new technologies for the future energy security. One of the most promising of these technologies is a photovoltaic system. In this study, Life Cycle Assessment(LCA) is carried out to analyse the environmental issues(e.g. global warming, abiotic resource depletion) of CdTe photovoltaic system. The spatial and temporal scope of this study was set in Korea during 2004~2005. We assumed that CdTe photovoltaic system was installed in Mokpo where the amount of solar irradiation was higher than other places in Korea. Based on the present data and some assumptions, greenhouse gas emission was 39.2g $CO_2$-eq./kWh. Therefore the electricity produced by CdTe photovoltaic system is more environmentally friendly than the conventional power generation system.

  • PDF

A Review on Degradation of Silicon Photovoltaic Modules

  • Yousuf, Hasnain;Khokhar, Muhammad Quddamah;Zahid, Muhammad Aleem;Kim, Jaeun;Kim, Youngkuk;Cho, Sung Bae;Cho, Young Hyun;Cho, Eun-Chel;Yi, Junsin
    • New & Renewable Energy
    • /
    • v.17 no.1
    • /
    • pp.19-32
    • /
    • 2021
  • Photovoltaic (PV) panels are generally treated as the most dependable components of PV systems; therefore, investigations are necessary to understand and emphasize the degradation of PV cells. In almost all specific deprivation models, humidity and temperature are the two major factors that are responsible for PV module degradation. However, even if the degradation mode of a PV module is determined, it is challenging to research them in practice. Long-term response experiments should thus be conducted to investigate the influences of the incidence, rates of change, and different degradation methods of PV modules on energy production; such models can help avoid lengthy experiments to investigate the degradation of PV panels under actual working conditions. From the review, it was found that the degradation rate of PV modules in climates where the annual average ambient temperature remained low was -1.05% to -1.16% per year, and the degree of deterioration of PV modules in climates with high average annual ambient temperatures was -1.35% to -1.46% per year; however, PV manufacturers currently claim degradation rates of up to -0.5% per year.

Sustainability Evaluation for Shellfish Production in Gamak Bay Based on the Systems Ecology 1. EMERGY Evaluation for Shellfish Production in Gamak Bay (시스템 생태학적 접근법에 의한 가막만 패류생산의 지속성 평가 1. 가막만 패류양식의 에머지 평가)

  • Oh, Hyun-Taik;Lee, Suk-Mo;Lee, Won-Chan;Jung, Rae-Hong;Hong, Suk-Jin;Kim, Nam-Kook;Tilburg, Charles
    • Journal of Environmental Science International
    • /
    • v.17 no.8
    • /
    • pp.841-856
    • /
    • 2008
  • This research outlines a new method for evaluation of shellfish production in Gamak Bay based on the concept of EMERGY. Better understanding of those environmental factors influencing oyster production and the management of oyster stocks requires the ability to assess the real value of environmental sources such as solar energy, river, tide, wave, wind, and other physical mechanisms. In this research, EMERGY flows from environment sources were 76% for shellfish aquaculture in Gamak Bay. EMERGY yield ratio, Environmental Loading Ratio, and Sustainability Index were 4.26, 0.31 and 13.89, respectively. Using the Emergy evaluation data, the predicted maximum shellfish aquaculture production in Gamak Bay and the FDA (Food and Drug Administration, U.S.) designated area in Gamak Bay were 10,845 ton/y and 7,548 ton/yr, respectively. Since the predicted shellfish production was approximately 1.3 times more than produced shellfish production in 2005, the carrying capacity of Gamak Bay is estimated to be 1.3 times more than the present oyster production.