DOI QR코드

DOI QR Code

Review of the Silicon Oxide and Polysilicon Layer as the Passivated Contacts for TOPCon Solar Cells

  • Mengmeng Chu (Interdisciplinary Program in Photovoltaic System Engineering, Sungkyunkwan University) ;
  • Muhammad Quddamah Khokhar (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Hasnain Yousuf (Interdisciplinary Program in Photovoltaic System Engineering, Sungkyunkwan University) ;
  • Xinyi Fan (Interdisciplinary Program in Photovoltaic System Engineering, Sungkyunkwan University) ;
  • Seungyong Han (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Youngkuk Kim (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Suresh Kumar Dhungel (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Junsin Yi (College of Information and Communication Engineering, Sungkyunkwan University)
  • Received : 2023.03.14
  • Accepted : 2023.03.30
  • Published : 2023.05.01

Abstract

p-type Tunnel Oxide Passivating Contacts (TOPCon) solar cell is fabricated with a poly-Si/SiOx structure. It simultaneously achieves surface passivation and enhances the carriers' selective collection, which is a promising technology for conventional solar cells. The quality of passivation is depended on the quality of the tunnel oxide layer at the interface with the c-Si wafer, which is affected by the bond of SiO formed during the subsequent annealing process. The highest cell efficiency reported to date for the laboratory scale has increased to 26.1%, fabricated by the Institute for Solar Energy Research. The cells used a p-type float zone silicon with an interdigitated back contact (IBC) structure that fabricates poly-Si and SiOx layer achieves the highest implied open-circuit voltage (iVoc) is 750 mV, and the highest level of edge passivation is 40%. This review presents an overview of p-type TOPCon technologies, including the ultra-thin silicon oxide layer (SiOx) and poly-silicon layer (poly-Si), as well as the advancement of the SiOx and poly-Si layers. Subsequently, the limitations of improving efficiency are discussed in detail. Consequently, it is expected to provide a basis for the simplification of industrial mass production.

Keywords

Acknowledgement

This research was supported by grants from the New and Renewable Energy Technology Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by the Korean Ministry of Trade, Industry, and Energy (MOTIE) (Project No.20218520010100 and 20203040010320).

References

  1. K.W.A. Chee, B. K. Ghosh, I. Saad, Y. Hong, Q. H. Xia, P. Gao, J. Ye, and Z. J. Ding, Nano Energy, 95, 106899 (2022). [DOI: https://doi.org/10.1016/j.nanoen.2021.106899]
  2. Z. Liu, S. E. Sofia, H. S. Laine, M. Woodhouse, S. Wieghold, I. M. Peters, and T. Buonassisi, Energy Environ. Sci., 13, 12 (2020). [DOI: https://doi.org/10.1039/c9ee02452b]
  3. T. G. Allen, J. Bullock, X. Yang, A. Javey, and S. D. Wolf, Nat. Energy, 4, 914 (2019). [DOI: https://doi.org/10.1038/s41560-019-0463-6]
  4. C. Battaglia, X. Yin, M. Zheng, I. D. Sharp, T. Chen, S. McDonnell, A. Azcatl, C. Carraro, B. Ma, R. Maboudian, R. M. Wallace, and A. Javey, Nano Lett., 14, 967 (2014). [DOI: https://doi.org/10.1021/nl404389u]
  5. J. Bullock, Y. Wan, Z. Xu, S. Essig, M. Hettick, H. Wang, W. Ji, M. Boccard, A. Cuevas, C. Ballif, and A. Javey, ACS Energy Lett., 3, 508 (2018). [DOI: https://doi.org/10.1021/acsenergylett.7b01279]
  6. U. Wurfel, A. Cuevas, and P. Wurfel, IEEE J. Photovoltaics, 5, 461 (2015). [DOI: https://doi.org/10.1109/JPHOTOV.2014.2363550]
  7. H. Yousuf, M. Q. Khokhar, S. Chowdhury, D. P. Pham, Y. Kim, M. Ju, Y. Cho, E. C. Cho, and J. Yi, Curr. Photovoltaic Res., 9, 75 (2021). [DOI: https://doi.org/10.21218/CPR.2021.9.3.075]
  8. M. Q. Khokhar, S. Q. Hussain, S. Chowdhury, M. A. Zahid, D. P. Pham, S. Jeong, S. Kim, S. Kim, E. C. Cho, and J. Yi, Energy Convers. Manage., 252, 115033 (2022). [DOI: https://doi.org/10.1016/j.enconman.2021.115033]
  9. J. Zhou, Q. Huang, Q. Zhao, W. Wang, X. Niu, Y. He, X. Su, Y. Zhao, and G. Hou, Sol. Energy Mater. Sol. Cells, 245, 111865 (2022). [DOI: https://doi.org/10.1016/j.solmat.2022.111865]
  10. Z. C. Holman, M. Filipic, B. Lipovsek, S. D. Wolf, F. Smole, M. Topic, and C. Ballif, Sol. Energy Mater. Sol. Cells, 120, 426 (2014). [DOI: https://doi.org/10.1016/j.solmat.2013.06.024]
  11. J. Schmidt, R. Peibst, and R. Brendel, Sol. Energy Mater. Sol. Cells, 187, 39 (2018). [DOI: https://doi.org/10.1016/j.solmat.2018.06.047]
  12. M. A. Green, E. D. Dunlop, G. Siefer, M. Yoshita, N. Kopidakis, K. Bothe, and X. Hao, Prog. Photovoltaics: Res. Appl., 31, 3 (2022). [DOI: https://doi.org/10.1002/pip.3646]
  13. S. Sadkukhan, S. Acharya, T. Panda, N. C. Mandal, S. Bose, G. Das, S. Maity, P. Chaudhuri, S. Chakraborty, P. Chakraborty, and H. Saha, IEEE J. Photovoltaics, 13, 236 (2023). [DOI: https://doi.org/10.1109/jphotov.2023.3238270]
  14. M. A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A.W.Y. Ho-Baillie, Prog. Photovoltaics: Res. Appl., 26, 668 (2017). [DOI: https://doi.org/10.1002/pip.2909]
  15. F. Haase, C. Hollemann, S. Schafer, A. Merkle, M. Rienacker, J. Krugener, R. Brendel, and R. Peibst, Sol. Energy Mater. Sol. Cells, 186, 184 (2018). [DOI: https://doi.org/10.1016/j.solmat.2018.06.020]
  16. F. Feldmann, M. Bivour, C. Reichel, M. Hermle, and S. W. Glunz, Sol. Energy Mater. Sol. Cells, 120, 270 (2014). [DOI: https://doi.org/10.1016/j.solmat.2013.09.017]
  17. A. Richter, R. Muller, J. Benick, F. Feldmann, B. Steinhauser, C. Reichel, A. Fell, M. Bivour, M. Hermle, and S. W. Glunz, Nat. Energy, 6, 429 (2021). [DOI: https://doi.org/10.1038/s41560-021-00805-w]
  18. S. Schafer, F. Haase, C. Hollemann, J. Hensen, J. Krugener, R. Brendel, and R. Peibst, Sol. Energy Mater. Sol. Cells, 200, 110021 (2019). [DOI: https://doi.org/10.1016/j.solmat.2019.110021]
  19. W. Long, S. Yin, F. Peng, M. Yang, L. Fang, X. Ru, M. Qu, H. Lin, and X. Xu, Sol. Energy Mater. Sol. Cells, 231, 111291 (2021). [DOI: https://doi.org/10.1016/j.solmat.2021.111291]
  20. M. Kohler, M. Pomaska, P. Procel, R. Santbergen, A. Zamchiy, B. Macco, A. Lambertz, W. Duan, P. Cao, B. Klingebiel, S. Li, A. Eberst, M. Luysberg, K. Qiu, O. Isabella, F. Finger, T. Kirchartz, U. Rau, and K. Ding, Nat. Energy, 6, 529 (2021). [DOI: https://doi.org/10.1038/s41560-021-00806-9]
  21. J. Zhou, Q. Huang, Y. Ding, G. Hou, and Y. Zhao, Nano Energy, 92, 106712 (2022). [DOI: https://doi.org/10.1016/j.nanoen.2021.106712]
  22. A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, Phys. Rev. B, 86, 165202 (2012). [DOI: https://doi.org/10.1103/PhysRevB.86.165202]
  23. F. Feldmann, M. Bivour, C. Reichel, H. Steinkemper, M. Hermle, and S. W. Glunz, Sol. Energy Mater. Sol. Cells, 131, 46 (2014). [DOI: https://doi.org/10.1016/j.solmat.2014.06.015]
  24. H. Yousuf, M. Q. Khokhar, M. A. Zahid, M. Rabelo, S. Kim, D. P. Pham, Y. Kim, and J. Yi, Energies, 15, 5753 (2022). [DOI: https://doi.org/10.3390/en15155753]
  25. H. Tong, M. Liao, Z. Zhang, Y. Wan, D. Wang, C. Quan, L. Cai, P. Gao, W. Guo, H. Lin, C. Shou, Y. Zeng, B. Yan, and J. Ye, Sol. Energy Mater. Sol. Cells, 188, 149 (2018). [DOI: https://doi.org/10.1016/j.solmat.2018.09.001]
  26. D. Ma, W. Liu, M. Xiao, Z. Yang, Z. Liu, M. Liao, Q. Han, H. Cheng, H. Xing, Z. Ding, B. Yan, Y. Wang, Y. Zeng, and J. Ye, Sol. Energy, 242, 1 (2022). [DOI: https://doi.org/10.1016/j.solener.2022.07.003]
  27. C. K. Fink, K. Nakamura, S. Ichimura, and S. J. Jenkins, J. Phys.: Condens. Matter, 21, 183001 (2009). [DOI: https://doi.org/10.1088/0953-8984/21/18/183001]
  28. Y. Huang, M. Liao, Z. Wang, X. Guo, C. Jiang, Q. Yang, Z. Yuan, D. Huang, J. Yang, X. Zhang, Q. Wang, H. Jin, M. Al-Jassim, C. Shou, Y. Zeng, B. Yan, and J. Ye, Sol. Energy Mater. Sol. Cells, 208, 110389 (2020). [DOI: https://doi.org/10.1016/j.solmat.2019.110389]
  29. H. K. Asuha, O. Maida, M. Takahashi, and H. Iwasa, J. Appl. Phys., 94, 7328 (2003). [DOI: https://doi.org/10.1063/1.1621720]
  30. A. Moldovan, F. Feldmann, G. Krugel, M. Zimmer, J. Rentsch, M. Hermle, A. Roth-Folsch, K. Kaufmann, and C. Hagendorf, Energy Procedia, 55, 834 (2014). [DOI: https://doi.org/10.1016/j.egypro.2014.08.067]
  31. A. Ingenito, G. Nogay, J. Stuckelberger, P. Wyss, L. Gnocchi, C. Allebe, J. Horzel, M. Despeisse, F. J. Haug, P. Loper, and C. Ballif, IEEE. J. Photovoltaics, 9, 346 (2019). [DOI: https://doi.org/10.1109/JPHOTOV.2018.2886234]
  32. N. Balaji, D. Lai, V. Shanmugam, P. K. Basu, A. Khanna, S. Duttagupta, and A. G. Aberle, Sol. Energy, 214, 101 (2021). [DOI: https://doi.org/10.1016/j.solener.2020.11.025]
  33. Y. Zeng, D. Ma, Z. Liu, M. Liao, M. Xiao, H. Xing, N. Lin, Z. Ding, H. Cheng, Y. Wang, W. Liu, B. Yan, and J. Ye, Mater. Sci. Semicond. Process., 150, 106966 (2022). [DOI: https://doi.org/10.1016/j.mssp.2022.106966]
  34. A. Y. Liu, Z. Yang, F. Feldmann, J. I. Polzin, B. Steinhauser, S. P. Phang, and D. Macdonald, Sol. Energy Mater. Sol. Cells, 230, 111254 (2021). [DOI: https://doi.org/10.1016/j.solmat.2021.111254]
  35. F. Feldmann, M. Simon, M. Bivour, C. Reichel, M. Hermle, and S. W. Glunz, Sol. Energy Mater. Sol. Cells, 131, 100 (2014). [DOI: https://doi.org/10.1016/j.solmat.2014.05.039]
  36. R. Varache, C. Leendertz, M. E. Gueunier-Farret, J. Haschke, D. Munoz, and L. Korte, Sol. Energy Mater. Sol. Cells, 141, 14 (2015). [DOI: https://doi.org/10.1016/j.solmat.2015.05.014]
  37. D. Yan, A. Cuevas, J. Bullock, Y. Wan, and C. Samundsett, Sol. Energy Mater. Sol. Cells, 142, 75 (2015). [DOI: https://doi.org/10.1016/j.solmat.2015.06.001]
  38. Y. Zeng, H. Tong, C. Quan, L. Cai, Z. Yang, K. Chen, Z. Yuan, C. H. Wu, B. Yan, P. Gao, and J. Ye, Sol. Energy, 155, 654 (2017). [DOI: https://doi.org/10.1016/j.solener.2017.07.014]
  39. D. Ding, Y. Zhuang, Y. Cui, Y. Zhang, Z. Li, X. Zhang, Z. Ji, D. Wang, Y. Wan, and W. Shen, Phys. Status Solidi RRL, 15, 2000455 (2020). [DOI: https://doi.org/10.1002/pssr.202000455]
  40. S. Mark, D. Herrmann, M. Lenes, M. Renes, and A. Wolf, Sol. RRL, 5, 2011152 (2021). [DOI: https://doi.org/10.1002/solr.202100152]
  41. M. Firat, H. S. Radhakrishnan, S. Singh, F. Duerinckx, M. R. Payo, L. Tous, and J. Poortmans, Sol. Energy Mater. Sol. Cells, 240, 111692 (2022). [DOI: https://doi.org/10.1016/j.solmat.2022.111692]
  42. Y. Lin, Z. Yang, Z. Liu, J. Zheng, M. Feng, Y. Zhi, L. Lu, M. Liao, W. Liu, D. Ma, Q. Han, H. Cheng, Q. Zeng, Z. Yuan, B. Yan, Y. Zeng, and J. Ye, Energy Environ. Sci., 14, 6406 (2021). [DOI: https://doi.org/10.1039/D1EE02011K]
  43. Z. Rui, Y. Zeng, X. Guo, Q. Yang, Z. Wang, C. Shou, W. Ding, J. Yang, X. Zhang, Q. Wang, H. Jin, M. Liao, S. Huang, B. Yan, and J. Ye, Sol. Energy, 194, 18 (2019). [DOI: https://doi.org/10.1016/j.solener.2019.10.064]
  44. B. Hoex, S.B.S. Heil, E. Langereis, M.C.M. van de Sanden, and W.M.M. Kessels, Appl. Phys Lett., 89, 042112 (2006). [DOI: https://doi.org/10.1063/1.2240736]
  45. D. L. Young, B. G. Lee, D. Fogel, W. Nemeth, V. LaSalvia, S. Theingi, M. Page, M. Young, C. Perkins, and P. Stradins, IEEE. J. Photovoltaics, 7, 1640 (2017). [DOI: https://doi.org/10.1109/JPHOTOV.2017.2748422]
  46. T. Sugiura, S. Matsumoto, and N. Nakano, Sol. Energy, 214, 205 (2021). [DOI: https://doi.org/10.1016/j.solener.2020.11.032]
  47. F. Feldmann, B. Steinhauser, V. Arya, A. Buchler, A. A. Brand, S. Kluska, M. Hermle, and S. W. Glunz, 33rd European Photovoltaic Solar Energy Conference and Exhibition (Fraunhofer Institute for Solar Energy Systems ISE, Amsterdam, The Netherlands, 2017) p. 465. [DOI: https://www.researchgate.net/publication/324537506]