• Title/Summary/Keyword: solar concentration

Search Result 546, Processing Time 0.025 seconds

The Effect of Boron Doped CdS Film on CdS/CdTe Solar Cell (CdS 박막의 boron doping에 따른 CdS/CdTe 태양전지 특성)

  • Lee, H.Y.;Lee, J.H.;Kim, J.H.;Park, Y.K.;Shin, J.H.;Shin, S.H.;Park, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1370-1372
    • /
    • 1998
  • Boron doped CdS films were prepared by CBD(Chemical Bath Deposition) method using boric acid ($B_3HO_3$) as donor dopant source, and their properties were investigated. As-grown CdS films were highly adherent and specularly reflective. Boron doped CdS film which was fabricated under the condition of 0.01 $B_3HO_3/Cd(Ac)_2$ mole ratio, exhibited the lowest resistivity of $2{\Omega}cm$ and the highest optical bandgap of 2.41eV. Also, CdS/CdTe solar cells were fabricated with various doping concentration of CdS films. Using optimized CdS film as the window layer of CdS/CdTe solar cell, the characteristics of the cell were improved. ( $V_{oc}$=610mV, $J_{sc}$=37.5mA/cm, FF=0.4, $\eta$=9.1% )

  • PDF

Advanced Transmittance and Surface-Morphology of CdS thin films prepared by chemical bath deposition using various complexing agents for solar cells (용액 증착법으로 증착된 CdS 박막의 제조와 고상과 액상 화합제에 따른 표면 특성 비교)

  • Yoo, Beom-Keun;Kim, Jin-Sang;Park, Yong-Wook;Choi, Doo-Jin;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.456-456
    • /
    • 2008
  • In the past few years, the deposition and characterization of cadmium sulfide semiconducting thin films has received a considerable amount of interest due to their potential application in the area of electronic and opto-electronic devices fabrications. Polycrystalline CdS thin films posses good optical transmittance, wide band-gap and electrical properties makes it as one of the ideal material for their application to solar cell fabrication. Cadmium sulfate thin films were deposited by the chemical bath deposition method using tartaric acid and triethanolamine as a complexing agent. Deposition parameters such as pH, temperature, deposition time and concentration of the reactant species were optimized so as to obtain reflecting, good adherent uniform thin films on the glass substrate. Reaction mechanism of the thin film formation is also reported. The crystallographic structure and the crystallite size were studied by the X-ray diffraction pattern. The optical band-gap of deposited film is identified by measuring the transmittance in the visible region. Temperature dependence of resistivity confirmed the semiconducting behavior of the film. Scanning electron micrographs (SEM) showed the presence of grain particles of size 50 nm.

  • PDF

Optical Fiber Daylighting System Combined with LED Lighting and CPV based on Stepped Thickness Waveguide for Indoor Lighting

  • Vu, Ngoc Hai;Shin, Seoyong
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.488-499
    • /
    • 2016
  • We present a design and optical simulation of a cost-effective hybrid daylighting/LED system composed of mixing sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting. In this approach, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The proposed sunlight collector consists of a Fresnel lens array. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. The visible rays passing through the beam splitters are coupled to a stepped thickness waveguide (STW) by tilted mirrors and confined by total internal reflection (TIR). LEDs are integrated at the end of the STW to improve the lighting quality. LEDs’ light and sunlight are mixed in the waveguide and they are coupled into an optical fiber bundle for indoor illumination. An optical sensor and lighting control system are used to control the LED light flow to ensure that the total output flux for indoor lighting is a fixed value when the sunlight is inadequate. The daylighting capacity was modeled and simulated with a commercial ray tracing software (LighttoolsTM). Results show that the system can achieve 63.8% optical efficiency at geometrical concentration ratio of 630. A required accuracy of sun tracking system achieved more than ±0.5o . Therefore, our results provide an important breakthrough for the commercialization of large scale optical fiber daylighting systems that are faced with challenges related to high costs.

Characteristics of the Mg and In co-doped ZnO Thin Films with Various Substrate Temperatures (RF 마그네트론 스퍼터를 이용하여 제작한 MIZO 박막의 특성에 미치는 기판 온도의 영향)

  • Jeon, Kiseok;Jee, Hongsub;Lim, Sangwoo;Jeong, Chaehwan
    • Current Photovoltaic Research
    • /
    • v.4 no.4
    • /
    • pp.150-154
    • /
    • 2016
  • Mg and In co-doped ZnO (MIZO) thin films with transparent conducting characteristics were successfully prepared on glass substrates by RF magnetron sputtering technique. The Influence of different substrate temperature (from RT to $400^{\circ}C$) on the structural, morphological, electrical, and optical properties of MIZO thin films were investigated. The MIZO thin film prepared at the substrate temperature of $350^{\circ}C$ showed the best electrical characteristics in terms of the carrier concentration ($4.24{\times}10^{20}cm^{-3}$), charge carrier mobility ($5.01cm^2V^{-1}S^{-1}$), and a minimum resistivity ($1.24{\times}10^{-4}{\Omega}{\cdot}cm$). The average transmission of MIZO thin films in the visible range was over 80% and the absorption edges of MIZO thin films were very sharp. The bandgap energy of MIZO thin films becomes wider from 3.44 eV to 3.6 eV as the substrate temperature increased from RT to $350^{\circ}C$. However, Band gap energy of MIZO thin film was narrow at substrate temperature of $400^{\circ}C$.

Effect of Surface Microstructure of Silicon Substrate on the Reflectance and Short-Circuit Current (실리콘 기판 표면 형상에 따른 반사특성 및 광 전류 개선 효과)

  • Yeon, Chang Bong;Lee, Yoo Jeong;Lim, Jung Wook;Yun, Sun Jin
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.116-122
    • /
    • 2013
  • For fabricating silicon solar cells with high conversion efficiency, texturing is one of the most effective techniques to increase short circuit current by enhancing light trapping. In this study, four different types of textures, large V-groove, large U-groove, small V-groove, and small U-groove, were prepared by a wet etching process. Silicon substrates with V-grooves were fabricated by an anisotropic etching process using a KOH solution mixed with isopropyl alcohol (IPA), and the size of the V-grooves was controlled by varying the concentration of IPA. The isotropic etching process following anisotropic etching resulted in U-grooves and the isotropic etching time was determined to obtain U-grooves with an opening angle of approximately $60^{\circ}$. The results indicated that U-grooves had a larger diffuse reflectance than V-grooves and the reflectances of small grooves was slightly higher than those of large grooves depending on the size of the grooves. Then amorphous Si:H thin film solar cells were fabricated on textured substrates to investigate the light trapping effect of textures with different shapes and sizes. Among the textures fabricated in this work, the solar cells on the substrate with small U-grooves had the largest short circuit current, 19.20 mA/$cm^2$. External quantum efficiency data also demonstrated that the small, U-shape textures are more effective for light trapping than large, V-shape textures.

Study of P-type Wafer Doping for Solar Cell Using Atmospheric Pressure Plasma (대기압 플라즈마를 이용한 P타입 태양전지 웨이퍼 도핑 연구)

  • Yun, Myoungsoo;Jo, Taehun;Park, Jongin;Kim, Sanghun;Kim, In Tae;Choi, Eun Ha;Cho, Guangsup;Kwon, Gi-Chung
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.120-123
    • /
    • 2014
  • Thermal doping method using furnace is generally used for solar-cell wafer doping. It takes a lot of time and high cost and use toxic gas. Generally selective emitter doping using laser, but laser is very high equipment and induce the wafer's structure damage. In this study, we apply atmospheric pressure plasma for solar-cell wafer doping. We fabricated that the atmospheric pressure plasma jet injected Ar gas is inputted a low frequency (1 kHz ~ 100 kHz). We used shallow doping wafers existing PSG (Phosphorus Silicate Glass) on the shallow doping CZ P-type wafer (120 ohm/square). SIMS (Secondary Ion Mass Spectroscopy) are used for measuring wafer doping depth and concentration of phosphorus. We check that wafer's surface is not changed after plasma doping and atmospheric pressure doping width is broaden by increase of plasma treatment time and current.

Effect of KCN Treatment on Cu-Se Secondary Phase of One-step Sputter-deposited CIGS Thin Films Using Quaternary Target

  • Jung, Sung Hee;Choi, Ji Hyun;Chung, Chee Won
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.88-94
    • /
    • 2014
  • The structural, optical and electrical properties of sputter-deposited CIGS films were directly influenced by the sputtering process parameters such as substrate temperature, working pressure, RF power and distance between target and substrate. CIGS thin films deposited by using a quaternary target revealed to be Se deficient due to Se low vapor pressure. This Se deficiency affected the overall stoichiometry of the films, causing the films to be Cu-rich. Current tends to pass through the Cu-Se channels which act as the shunting path increasing the film conductivity. The crystal structure of CIGS thin films depends on the substrate orientation due to the influence of surface morphology, grain size and stress of Mo substrate. The excess of Cu was removed from the CIGS films by KCN treatment, achieving a suitable Cu concentration (referred as Cu-poor) for the fabrication of solar cell. Due to high Cu concentrations on the CIGS film surface induced by Cu-Se phases after CIGS film deposition, KCN treatment proved to be necessary for the fabrication of high efficiency solar cells. Also during KCN treatment, dislocation density and lattice parameter decreased as excess Cu was removed, resulting in increase of bandgap and the decrease of conductivity of CIGS films. It was revealed that Cu-Se secondary phase could be removed by KCN wet etching of CIGS films, allowing the fabrication of high efficiency absorber layer.

The Enhancement of the Performance of Dye Sensitized Solar Cells Using Nb2O5-TiO2 Compound (Nb2O5-TiO2 화합물을 이용한 염료감응형 태양전지의 성능 향상)

  • Choi, Seok-Won;Seo, Hyun-Woong;Son, Min-Kyu;Kim, Soo-Kyoung;Hong, Na-Yeong;Kim, Hee-Je;Kim, Jong-Rak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1153-1158
    • /
    • 2012
  • Niobium oxide ($Nb_2O_5$) has a strong chemical coherence and good electrical conductivity. Therefore, this material is helpful to enhance the performance of the dye sensitized solar cells (DSC) by improving the electron mobility. In this study, $Nb_2O_5$ was mixed with $TiO_2$ and this compound was applied to the DSC to improve its performance. As a result, the current density of the DSC using the $Nb_2O_5-TiO_2$ compound on the photoelectrode was increased, because the internal resistance concerned to the electron transfer in the photoelectrode of DSC was decreased. However, large amount of the $Nb_2O_5$ induces the decrease of the efficiency of the DSC because the surface area to attach dye molecules is decreased due to the large particle of $Nb_2O_5$. Therefore, it is important to optimize the mixture ratio of the $Nb_2O_5-TiO_2$ compound for maximizing the performance of the DSC. Finally, the most optimum performance of the DSC was shown in case of the $Nb_2O_5$ concentration of 10 wt% of the $Nb_2O_5-TiO_2$ compound.

Composition Control of a Light Absorbing Layer of CuInSe2 Thin Film Solar Cells Prepared by Electrodeposition (전착법을 이용한 CuInSe2 박막태양전지 광활성층의 조성 조절)

  • Park, Young-Il;Kim, Donghwan;Seo, Kyungwon;Jeong, Jeung-Hyun;Kim, Honggon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.232-239
    • /
    • 2013
  • Thin light-active layers of the $CuInSe_2$ solar cell were prepared on Mo-coated sodalime glass substrates by one-step electrodeposition and post-annealing. The structure, morphology, and composition of $CuInSe_2$ film could be controlled by deposition parameters, such as the composition of metallic precursors, the concentration of complexing agents, and the temperature of post-annealing with elemental selenium. A dense and uniform Cu-poor $CuInSe_2$ film was successfully obtained in a range of parametric variation of electrodeposition with a constant voltage of -0.5 V vs. a Ag/AgCl reference electrode. The post-annealing of the film at high temperature above $500^{\circ}C$ induced crystallization of $CuInSe_2$ with well-developed grains. The KCN-treatment of the annealed $CuInSe_2$ films further induced Cu-poor $CuInSe_2$ films without secondary phases, such as $Cu_2Se$. The structure, morphology, and composition of $CuInSe_2$ films were compared with respect to the conditions of electrodeposition and post-annealing using SEM, XRD, Raman, AES and EDS analysis. And the conditions for preparing device-quality $CuInSe_2$ films by electrodeposition were proposed.

Numerical Analysis on Thermal-Induced Degradation of n-i-p Structure Perovskite Solar Cells Using SCAPS-1D (SCAPS-1D 시뮬레이션을 이용한 n-i-p 구조 페로브스카이트 태양전지의 열적 열화 원인 분석)

  • Kim, Seongtak;Bae, Soohyun;Jeong, Younghun;Han, Dong-Woon;Kim, Donghwan;Mo, Chan Bin
    • Current Photovoltaic Research
    • /
    • v.10 no.1
    • /
    • pp.16-22
    • /
    • 2022
  • The long-term stability of PSCs against visual and UV light, moisture, electrical bias and high temperature is an important issue for commercialization. In particular, since the operation temperature of solar cell can rise above 85℃, a study on thermal stability is required. In this study, the cause of thermal-induced degradation of PSCs was investigated using the SCAPS-1D simulation tool. First, PSCs of TiO2/CH3NH3PbI3/Spiro-OMeTAD/Au structure were exposed to a constant temperature of 85℃ to observe changes in conversion efficiency and quantum efficiency. Because the EQE reduction above 500 nm was remarkable, we simulated PSCs performance as a function of lifetime, doping density of perovskite and spiro-OMeTAD. Consequently, the main cause of thermal-induced degradation is considered to be the change in the perovskite doping concentration and lifetime due to ion migration of perovskite.