• 제목/요약/키워드: solar cell manufacturing equipment

검색결과 12건 처리시간 0.024초

가우시안 혼합모델을 이용한 솔라셀 색상분류 (Solar Cell Classification using Gaussian Mixture Models)

  • 고진석;임재열
    • 반도체디스플레이기술학회지
    • /
    • 제10권2호
    • /
    • pp.1-5
    • /
    • 2011
  • In recent years, worldwide production of solar wafers increased rapidly. Therefore, the solar wafer technology in the developed countries already has become an industry, and related industries such as solar wafer manufacturing equipment have developed rapidly. In this paper we propose the color classification method of the polycrystalline solar wafer that needed in manufacturing equipment. The solar wafer produced in the manufacturing process does not have a uniform color. Therefore, the solar wafer panels made with insensitive color uniformity will fall off the aesthetics. Gaussian mixture models (GMM) are among the most statistically mature methods for clustering and we use the Gaussian mixture models for the classification of the polycrystalline solar wafers. In addition, we compare the performance of the color feature vector from various color space for color classification. Experimental results show that the feature vector from YCbCr color space has the most efficient performance and the correct classification rate is 97.4%.

재 제조 태양광모듈의 내구성능 평가 연구 (Durability Evaluation Study of Re-manufactured Photovoltaic Modules)

  • 김경수
    • Current Photovoltaic Research
    • /
    • 제12권1호
    • /
    • pp.17-23
    • /
    • 2024
  • Photovoltaic (PV) power generation is the world's best and largest renewable energy that generates electricity with infinite sunlight. Solar cell modules are a component of photovoltaic power generation and must have a long-term durability of at least 25 years. The development of processes and equipment that can be recovered through the recycling of metals and valuable metals when the solar module's lifespan is over has been completed to the level of commercialization, but few processes have been developed that require repair due to initial defects. This is mainly due to the economic problems caused by remaking. However, if manufacturing processes such as repairing solar cell modules that have been proven to be early defects are established and the technical review of long-term reliability and durability reaches a certain level, it is considered that it will be a recommended process technology for environmental economics. In this paper, assuming that a defective solar cell module occurs artificially, a manufacturing process for replacement of solar cells was developed, and a technical verification of the manufacturing technology was conducted through long-term durability evaluation in accordance with KS C 8561. Through this, it was determined that remanufacturing technology for solar cell replacement of solar cell modules that occurred in a short period of time after installation was possible, and the research results were announced through a journal to commercialize solar modules using manufacturing technology in the solar market in the future.

태양전지 제조용 세정장비의 건조모듈 유동해석 (Flow simulations of the wet station dryer module for the solar cell manufacturing)

  • 홍주표;임기섭;윤종국
    • 반도체디스플레이기술학회지
    • /
    • 제10권2호
    • /
    • pp.109-113
    • /
    • 2011
  • Hot air flow simulations of the wet station dryer module for the solar cell cleaning were conducted. Air incident angles such as to the substrates ($45^{\circ}$), to the bottom ($90^{\circ}$), and to the wall ($135^{\circ}$) were considered. Based on the simulated velocity and temperature profiles, appropriate incident angle was proposed, and it was well matched to experimental results. Additionally, uniform and non-uniform air hole sizes of the tube were compared for the uniform air flow distribution through the batch.

선택적 에미터 결정질 실리콘 태양전지 제작을 위한 할로겐 램프 장치 개발 (Equipment Manufacturing of Lamp Heating to Fabricate Selective Emitter Silicon Solar Cell)

  • 한규민;최성진;이희덕;송희은
    • 한국태양에너지학회 논문집
    • /
    • 제32권5호
    • /
    • pp.102-107
    • /
    • 2012
  • Halogen lamp was applied to fabricate the selective emitter crystalline silicon solar cell. In selective emitter structure, the recombination of minority carriers is reduced with heavily doped emitter under metal grid, consequently improving the conversion efficiency. Laser selective emitter process which is recently used the most generally induces the damage on the silicon surface. However the lamp has enough heat to form heavily doped emitter layer by diffusing phosphorus from PSG without surface damage. In this work, we have studied to find the design and the suitable condition for halogen lamp such as power, time, temperature and figured out the possibility to fabricate the selective emitter silicon solar cell by lamp heating. The sheet resistance with $100{\Omega}/{\Box}$ was lower to $50{\Omega}/{\Box}$ after halogen lamp treatment. Heat transfer to lightly doped emitter region was blocked by using the shadow mask.

Prevention of P-i Interface Contamination Using In-situ Plasma Process in Single-chamber VHF-PECVD Process for a-Si:H Solar Cells

  • Han, Seung-Hee;Jeon, Jun-Hong;Choi, Jin-Young;Park, Won-Woong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.204-205
    • /
    • 2011
  • In thin film silicon solar cells, p-i-n structure is adopted instead of p/n junction structure as in wafer-based Si solar cells. PECVD is a most widely used thin film deposition process for a-Si:H or ${\mu}c$-Si:H solar cells. For best performance of thin film silicon solar cell, the dopant profiles at p/i and i/n interfaces need to be as sharp as possible. The sharpness of dopant profiles can easily achieved when using multi-chamber PECVD equipment, in which each layer is deposited in separate chamber. However, in a single-chamber PECVD system, doped and intrinsic layers are deposited in one plasma chamber, which inevitably impedes sharp dopant profiles at the interfaces due to the contamination from previous deposition process. The cross-contamination between layers is a serious drawback of a single-chamber PECVD system in spite of the advantage of lower initial investment cost for the equipment. In order to resolve the cross-contamination problem in single-chamber PECVD systems, flushing method of the chamber with NH3 gas or water vapor after doped layer deposition process has been used. In this study, a new plasma process to solve the cross-contamination problem in a single-chamber PECVD system was suggested. A single-chamber VHF-PECVD system was used for superstrate type p-i-n a-Si:H solar cell manufacturing on Asahi-type U FTO glass. A 80 MHz and 20 watts of pulsed RF power was applied to the parallel plate RF cathode at the frequency of 10 kHz and 80% duty ratio. A mixture gas of Ar, H2 and SiH4 was used for i-layer deposition and the deposition pressure was 0.4 Torr. For p and n layer deposition, B2H6 and PH3 was used as doping gas, respectively. The deposition temperature was $250^{\circ}C$ and the total p-i-n layer thickness was about $3500{\AA}$. In order to remove the deposited B inside of the vacuum chamber during p-layer deposition, a high pulsed RF power of about 80 W was applied right after p-layer deposition without SiH4 gas, which is followed by i-layer and n-layer deposition. Finally, Ag was deposited as top electrode. The best initial solar cell efficiency of 9.5 % for test cell area of 0.2 $cm^2$ could be achieved by applying the in-situ plasma cleaning method. The dependence on RF power and treatment time was investigated along with the SIMS analysis of the p-i interface for boron profiles.

  • PDF

인쇄전자를 위한 롤투롤 프린팅 공정 장비 기술

  • 김동수;김충환;김명섭
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.15.2-15.2
    • /
    • 2009
  • Manufacturing of printed electronics using printing technology has begun to get into the hot issue in many ways due to the low cost effectiveness to existing semi-conductor process. This technology with both low cost and high productivity, can be applied in the production of organic thin film transistor (OTFT), solar cell, radio frequency identification (RFID) tag, printed battery, E-paper, touch screen panel, black matrix for liquid crystal display (LCD), flexible display, and so forth. The emerging technology to manufacture the products in mass production is roll-to-roll printing technology which is a manufacturing method by printings of multi-layered patterns composed of semi-conductive, dielectric and conductive layers. In contrary to the conventional printing machines in which printing precision is about $50~100{\mu}m$, the printing machines for printed electronics should have a precision under $30{\mu}m$. In general, in order to implement printed electronics, narrow width and gap printing, register of multi-layer printing by several printing units, and printing accuracy of under $30{\mu}m$ are all required. We developed the roll-to-roll printing equipment used for printed electronics, which is composed of un-winder, re-winder, tension measurement system, feeding units, dancer systems, guide unit, printing unit, vision system, dryer units, and various auxiliary devices. The equipment is designed based on cantilever type in which all rollers except printing ones have cantilever types, which could give more accurate machine precision as well as convenience for changing rollers and observing the process.

  • PDF

Development of Process and Equipment for Roll-to-Roll convergence printing technology

  • 김동수;배성우;김충환
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.19.1-19.1
    • /
    • 2010
  • The process of manufacturing printed electronics using printing technology is attracting attention because its process cost is lower than that of the conventional semiconductor process. This technology, which offers both a lower cost and higher productivity, can be applied in the production of organic TFT (thin film transistor), solar cell, RFID(radio frequency identification) tag, printed battery, E-paper, touch screen panel, black matrix for LCD(liquid crystal display), flexible display, and so forth. In general, in order to implement printed electronics, narrow width and gap printing, registration of multi-layer printing by several printing units, and printing accuracy of under $20\;{\mu}m$ are all required. These electronic products require high precision to the degree of tens of microns - in a large area with flexible material, and mass productivity at low cost. As such, the roll-to-roll printing process is attracting attention as a mass production system for these printed electronic devices. For the commercialization of this process, two basic electronic ink technologies, such as conductive ink and polymers, and printing equipment have to be developed. Therefore, this paper addressed basis design and test to develop fine patterning equipment employing the roll-to-roll printing equipment and electronic ink.

  • PDF

Interface Control to get Higher Efficiency in a-Si:H Solar Cell

  • Han, Seung-Hee;Kim, En-Kyeom;Park, Won-Woong;Moon, Sun-Woo;Kim, Kyung-Hun;Kim, Sung-Min
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.193-193
    • /
    • 2012
  • In thin film silicon solar cells, p-i-n structure is adopted instead of p/n junction structure as in wafer-based Si solar cells. PECVD is the most widely used thin film deposition process for a-Si:H or ${\mu}c$-Si:H solar cells. Single-chamber PECVD system for a-Si:H solar cell manufacturing has the advantage of lower initial investment and maintenance cost for the equipment. However, in single-chamber PECVD system, doped and intrinsic layers are deposited in one plasma chamber, which inevitably impedes sharp dopant profiles at the interfaces due to the contamination from previous deposition process. The cross-contamination between layers is a serious drawback of single-chamber PECVD system. In this study, a new plasma process to solve the cross-contamination problem in a single-chamber PECVD system was suggested. In order to remove the deposited B inside of the plasma chamber during p-layer deposition, a high RF power was applied right after p-layer deposition with SiH4 gas off, which is then followed by i-layer, n-layer, and Ag top-electrode deposition without vacuum break. In addition to the p-i interface control, various interface control techniques such as FTO-glass pre-annealing in O2 environment to further reduce sheet resistance of FTO-glass, thin layer of TiO2 deposition to prevent H2 plasma reduction of FTO layer, and hydrogen plasma treatment prior to n-layer deposition, etc. were developed. The best initial solar cell efficiency using single-chamber PECVD system of 10.5% for test cell area of 0.2 $cm^2$ could be achieved by adopting various interface control methods.

  • PDF

양면형 BIPV 시스템의 설치환경에 따른 발전특성 분석 (Analysis of Generation Characteristics of a Bifacial BIPV System According to Installation Methods)

  • 강준구;김진희;김준태
    • Current Photovoltaic Research
    • /
    • 제3권4호
    • /
    • pp.121-125
    • /
    • 2015
  • BIPV system is one of the best ways to harness PV module. The BIPV system not only produces electricity, but also acts as a building envelope. Thus, it has the strong point of increasing the economical efficiency by applying the PV modules to the buildings. Bifacial solar cells can convert solar energy to electrical energy from both sides of the module. In addition, it is designed as 3 busbar layout which is the same with ordinary mono-facial soalr cells. Therefore, many of the module manufacturers can easily produce the bifacial solar cells without changing their manufacturing equipment. Moreover, bifacial BIPV system has much potential in building application by utilizing glass to glass structure. However, the performance of bifacial solar cells depends on a variety of factors, ranging from the back surface to surrounding conditions. Therefore, in order to apply bifacial solar cells to buildings, an analysis of bifacial PV module performance should be carried out that includes a consideration of various design elements, and reflects a wide range of installation conditions. As a result it found that the white insulation reflector type can improve the performance of the bifacial BIPV system by 16%, compared to the black insulation reflector type. The performance of the bifacial BIPV was also shown to be influenced by inclination angle, due to changes in both the amount of radiation captured on the front face and the radiation transmitted to the rear face through the transparent space. In this study is limited design condition and installation condition. Accordingly follow-up researches in this part need to be conducted.

신재생에너지 활용 및 저장기능을 이용한 교육용 모의 태양광발전 가로등 설계 (Design of Simulated Photovoltaic Power Streetlight for Education using Renewable Energy Utilization and Storage Function)

  • 윤용호
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권2호
    • /
    • pp.137-142
    • /
    • 2021
  • 태양광발전 가로등은 태양광에너지를 사용하여 2차전지에 충전 후 램프를 통해 야간조명에 활용하는 시스템으로서 부하 단 LED 가로등을 설치하여 독립형 또는 계통연계형으로 구성할 수 있다. 태양전지모듈을 통해 발전된 에너지는 충방전 제어장치를 통해 2차전지에 충전 후 일사량 감시에 따른 발전전압과 충전전압의 비교, 또는 일몰, 일출 후 특정시간 설정으로 LED 가로등을 점등 소등을 할 수 있다. 따라서 이러한 내용을 기반으로 본 논문에서는 신재생에너지 활용 및 저장기능을 이용한 교육용 모의 태양광발전 가로등 설계 및 제작을 통해 대학의 학생들에게 1) 태양광을 포함한 신재생에너지를 이용하여 전기에너지로 활용하는 에너지 변화의 흐름 이해, 2) 신재생에너지 이해 및 관련 제품의 기초설계와 제작 응용력 함양, 3) 전력변환을 통한 신재생에너지 활용과 하드웨어 제작을 통한 실습과 분석력 강화를 심어줄 수 있다.