• Title/Summary/Keyword: solar altitudes

Search Result 29, Processing Time 0.023 seconds

Technology Development Trends for High Altitude Wind Power Genration (고공 풍력발전 기술개발 현황)

  • Kim, Seok-Woo;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.1
    • /
    • pp.19-24
    • /
    • 2010
  • At the altitudes above 3km, the wind is three to four time faster and less variable than at the current MW sized wind turbine hub height of around 100m. In addition, power generation from wind turbines installed on the ground is intermittent because local wind conditions are affected by local topography and artificial structures. The wind energy researchers and engineers are now looking for revolutionary ideas to utilize high altitude wind resources in-creasing the capabilities of wind turbine installations. This article presents and discusses several concepts for wind energy exploitation from wind at high altitudes. The concepts presented in this paper make use of lifting bodies, called wings or kites, connected to a tether that stetches into the higher regions of the atmosphere.

A Computational Analysis on Candela Distribution Curves and Performance Prediction of a Fiber Optic Dish Daylighting System by Photopia (Photopia를 이용한 추적식 디쉬형 집광기의 배광분포 분석 및 자연채광 성능 예측)

  • Oh, Seung-Jin;Han, Hyun-Joo;Jeon, Young-Il;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.104-113
    • /
    • 2012
  • A set of candela distribution curves(CDCs) were generated for a fiber optic dish daylighting system by Photopia under clear sky conditions at different solar altitudes. The candela distribution curves were then exported to Radiance for photometric analysis of a windowless lecture room. Observations were made on the Radiance rendered illuminance images, which provided photo realistic scenes varying with solar altitudes. If no tracking error were assumed, the daylight collection efficiency of the system remained at a constant value of 68.4% during its operation. Higher the solar altitude angle, greater in photometric quantities were observed, which are represented by candela(cd) and total lumens(lm). In all cases considered, however, the angle of light distribution remained fixed reflecting the solar tracking feature of the system. The illuminance uniformity on the workplane lingered around 0.12, which is quite low. This is quite a contrast to its average value of 0.68 of the $2.7m^2$ area directly below the terminal device (diffuser) of the system. The maximum illuminance of 1,340lux was obtained at a solar altitude of 80 degrees.

Operation Availability Analysis Model Development for High Altitude Long Endurance Solar Powered UAV (고고도 장기체공 태양광 무인기의 운용 가용성 분석 모델 연구)

  • Bong, Jae-Hwan;Jeong, Seong-Kyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.433-440
    • /
    • 2022
  • High Altitude Long Endurance(HALE) solar powered UAV is the vehicle that flies for a long time as solar power energy sources. It can be used to replace satellites or provide continuous service because it can perform long-term missions at high altitudes. Due to the property of the mission, it is very important for HALE solar powered UAV to have maximum flight time. It is required for mission performance to fly at high altitudes continuously except a return for temporary maintenance. Therefore mission availability time analysis is a critical factor in the commercialization of HALE solar powered UAV. In this paper, we presented an analytic model and logic for available time analysis based on the design parameters of HALE solar powered UAV. This model can be used to analyze the possibility of applying UAV according to the UAV's mission in concept design before the UAV detail design stage.

Measuring the Earth's Size Using the Sun's Altitude and The Responses

  • Chae, Dong-Hyun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.5 no.1
    • /
    • pp.88-94
    • /
    • 2012
  • This study was created to resolve the problems embedded in the formal measuring experiments to determine the earth's size in the current curriculum, to develop an updated measuring experiment to determine the earth's size and to establish its effect. For this study, pre-service elementary teachers, who had attempted the experiment of measuring the size of the earth when they were in middle school, performed the experiments in the existing national curriculum, and their responses, collected through in-depth interviews, were examined. To begin with, the pre-service elementary teachers conducted the experiment of measuring the earth size and they recorded the problems while performing it. At the end, an in-depth interview was administered. Based on the problems, an updated measuring experiment to determine the earth's size was suggested to be applied to the same contents and be analyzed through the in-depth interviews. Common themes which were mutually categorized and analyzed by the two researchers were obtained based on the records produced while conducting the experiment and the in-depth interview data. The teachers mentioned that the experiments for measuring the size of the earth in the current curriculum gave rise to difficulties in measuring precisely the angles between the string and the post. Also, there has been a scientific contradiction that solar altitudes were increased in a high latitude region, instead of decreased. For this reason, an alternative method has been developed to measure the earth's size using the distance and the solar altitude difference of two places. The teachers all agreed that by using the updated measuring experiment, they can acquire more precise measurements and it is easier, faster and consequently more effective than the existing methods. Through the results of this study, I suggest that the newly developed experiment by the researchers can overhaul the problems of the current experiments and it can be an effective alternative to the current experiment.

Large Solar Eruptive Events

  • Lin, R.P.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.82.2-82.2
    • /
    • 2011
  • Major solar eruptive events, consisting of both a large flare and a near simultaneous fast coronal mass ejection (CME), are the most powerful explosions in the solar system, releasing $10^{32}-10^{33}$ ergs in ${\sim}10^{3-4}\;s$. They are also the most powerful and energetic particle accelerators, producing ions up to tens of GeV and electrons up to hundreds of MeV. For flares, the accelerated particles often contain up to ~50% of the total energy released, a remarkable efficiency that indicates the particle acceleration is intimately related to the energy release process. Similar transient energy release/particle acceleration processes appear to occur elsewhere in the universe, in stellar flares, magnetars, etc. Escaping solar energetic particles (SEPs) appear to be accelerated by the shock wave driven by the fast CME at altitudes of ~1 40 $R_s$, with an efficiency of ~10%, about what is required for supernova shock waves to produce galactic cosmic rays. Thus, large solar eruptive events are our most accessible laboratory for understanding the fundamental physics of transient energy release and particle acceleration in cosmic magnetized plasmas. They also produce the most extreme space weather - the escaping SEPs are a major radiation hazard for spacecraft and humans in space, the intense flare photon emissions disrupt GPS and communications on the Earth, while the fast CME restructures the interplanetary medium with severe effects on the magnetospheres and atmospheres of the Earth and other planets. Here I review present observations of large solar eruptive events, and future space and ground-based measurements needed to understand the fundamental processes involved.

  • PDF

NON-HYDROSTATIC SUPPORT OF PLASMA IN THE SOLAR CHROMOSPHERE AND CORONA

  • Chae, Jong-Chul
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.3
    • /
    • pp.55-64
    • /
    • 2010
  • We investigate how plasma structures in the solar chromosphere and corona can extend to altitudes much above hydrostatic scale heights from the solar surface even under the force of gravity. Using a simple modified form of equation of motion in the vertical direction, we argue that there are two extreme ways of non-hydrostatic support: dynamical support and magnetic support. If the vertical acceleration is downward and its magnitude is a significant fraction of gravitational acceleration, non-hydrostatic support is dynamical in nature. Otherwise non-hydrostatic support is static, and magnetic support by horizontal magnetic fields is the only other possibility. We describe what kind of observations are needed in the clarification of the nature of non-hydrostatic support. Observations available so far seem to indicate that spicules in the quiet regions and dynamic fibrils in active regions are dynamically supported whereas the general chromosphere as well as prorninences is magnetically supported. Moreover, it appears that magnetic support is required for plasma in some coronal loops as well. We suspect that the identification of a coronal loop with a simple magnetic flux tube might be wrong in this regard.

THE EFFECT OF ATMOSPHERIC SCATTERING AS INFERRED FROM THE ROCKET-BORNE UV RADIOMETER MEASUREMENTS

  • Kim, Jhoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.87-93
    • /
    • 1997
  • Radiometers in UV and visible wavelengths were onboard the Korean Sounding Rocket(KSR)-1 and 2 which were launched on June 4th and September 1st, 1993. These radiometers were designed to capture the solar radiation during the ascending period of the rocket flight. The purpose of the instrument was to measure the vertical profiles of stratospheric ozone densities. Since the instrument measured the solar radiation from the ground to its apogee, it is possible to investigate the altitude variation of the measured intensity and to estimate the effect of atmospheric scattering by comparing the UV and visible intensity. The visible channel was a reference because the 450-nm wavelength is in the atmospheric window region, where the solar radiation is transmitted through the atmosphere without being absorbed by other atmospheric gases. The use of 450-nm channel intensity as a reference should be limited to the altitude ranges above the certain altitudes, say 20 to 25km where the signals are not perturbed by atmospheric scattering effects.

  • PDF

Analysis of Martian topside ionospheric data obtained from Mars Advanced Radar for Subsurface and Ionospheric Sounding onboard Mars Express

  • Kim, Eojin;Seo, Haingja;Kim, Joo Hyeon;Lee, Joo Hee;Choi, Gihyuk;Sim, Eun-Sup
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.105.2-105.2
    • /
    • 2012
  • The upper ionosphere of Mars has been explored by many spacecraft like Mariners, Mars, Viking, and recently by MGS and MEX. MARSIS (Mars Advanced Radar for Subsurface and Ionospheric Sounding) aboard Mars Express Orbiter is operating from August 2005. MARSIS provides topside ionospheric traces, of which yield electron density profiles for altitudes above the primary ionospheric peak. A large amounts of data is useful for investigation of the Martian ionospheric environments under the changing conditions like solar activity, seasons, and solar zenith angle. We studied the characteristics of the Martian ionosphere through analysis of MARSIS data in the various conditions. We expect that our results contribute for understanding of the Martian ionospheric environment.

  • PDF

IONOSPHERIC EFFECTS ON THE RADIO COMMUNICATION (전파통신에서의 전리층 역할)

  • PYO YOO SURN;CHO KYOUNGSEOK;LEE DONG-HUN;KIM EUNHWA
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc2
    • /
    • pp.21-25
    • /
    • 2000
  • The ionosphere, the atmosphere of the earth ionized by solar radiations, has been strongly varied with solar activity. The ionosphere varies with the solar cycle, the seasons, the latitudes and during any given day. Radio wave propagation through or in the ionosphere is affected by ionospheric condition so that one needs to consider its effects on operating communication systems normally. For examples, sporadic E may form at any time. It occurs at altitudes between 90 to 140 km (in the E region), and may be spread over a large area or be confined to a small region. Sometimes the sporadic E layer works as a mirror so that the communication signal does not reach the receiver. And radiation from the Sun during large solar flares causes increased ionization in the D region which results in greater absorption of HF radio waves. This phenomenon is called short wave fade-outs. If the flare is large enough, the whole of the HF spectrum can be rendered unusable for a period of time. Due to events on the Sun, sometimes the Earth's magnetic field becomes disturbed. The geomagnetic field and the ionosphere are linked in complex ways and a disturbance in the geomagnetic field can often cause a disturbance in the F region of the ionosphere. An enhancement will not usually concern the HF communicator, but the depression may cause frequencies normally used for communication to be too high with the result that the wave penetrates the ionosphere. Ionospheric storms can occur throughout the solar cycle and are related to coronal mass ejections (CMEs) and coronal holes on the Sun. Except the above mentioned phenomena, there are a lot of things to affect the radio communication. Nowadays, radio technique for probing the terrestrial ionosphere has a tendency to use satellite system such as GPS. To get more accurate information about the variation of the ionospheric electron density, a TEC measurement system is necessary so RRL will operate the system in the near future.

  • PDF

Energy Balance and Constraints for the Initial Sizing of a Solar Powered Aircraft (태양광 추진 항공기의 초기 사이징을 위한 에너지 균형 및 구속조건 연구)

  • Hwang, Ho-Yon;Nam, Tae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.523-535
    • /
    • 2012
  • Solar powered aircraft are becoming more and more interesting for future long endurance missions at hight altitudes, because they could provide surveillance, earth monitoring, telecommunications, etc. without any atmospheric pollution and hopefully in the near future with competitive costs compared with satellites. However, traditional aircraft sizing methods currently employed in the conceptual design phase are not immediately applicable to solar powered aircraft. Hence, energy balance and constraint analyses were performed to determine how various power system components effect the sizing of a solar powered long endurance aircraft. The primary power system components considered in this study were photovoltaic (PV) modules for power generation and regenerative fuel cells for energy storage. To verify current research results, these new sizing methods were applied to HALE aircraft and results were presented.