• 제목/요약/키워드: solar absorber/receiver

검색결과 11건 처리시간 0.026초

개방형 체적식 흡수기를 위한 SiC 허니컴 모듈의 성능 평가 (Performance Evaluation of SiC Honeycomb Modules Used for Open Volumetric Solar Receivers)

  • 채관교;이현진;김종규;윤환기;이상남;한인섭;서두원
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.120-125
    • /
    • 2012
  • Daegu Solar Power Tower Plant of a 200 kW thermal capacity uses an open air receiver. An air receiver is generally based on the volumetric receiver concept with porous ceramic absorbers. Because absorber material is important in the volumetric receiver, ceramic materials with excellent thermal conductivity, high solar absorptivity and good thermal stability have been researched. KIER also developed SiC honeycomb absorber modules and evaluated performance of the modules at the KIER solar furnace. For performance evaluation, we made an open volumetric receiver containing the modules and measured the outlet temperature and the efficiency. It is demonstrated that performance of the KIER absorber is comparable to that of a reference absorber developed by DLR.

  • PDF

열손실을 고려한 PTC(Parabolic Trough Concentrator) 흡수기 최적 직경 결정에 관한 연구 (Determination of the Optimal PTC Receiver Diameter Considering Heat Losses)

  • 강용혁;곽희열;윤환기;유창균;이동규;서태범
    • 태양에너지
    • /
    • 제20권1호
    • /
    • pp.73-80
    • /
    • 2000
  • Considering the optical performance of the reflector and analyzing heat losses from the receiver, the optimal diameter of the absorber for a PTC(Parabolic Trough Concentrator) system was numerically determined. The results of this study were compared with the results of the IST (Industrial Solar Technology)-PTC test to verify the validity of the model. Good agreement was obtained with the deviation range from 0.4 to 7.7%. Generally, the net energy gained by the receiver shows the maximum at the particular absorber diameter and the specific gap size between the absorber and the glass envelop because the heat losses from the receiver becomes the minimum. The results showed that the conductive and convective heat losses became the minimum when the gap size was 7 to 10mm. Finally, it was known that the optimal absorber diameter was 62mm at $100^{\circ}C$, 57mm at $150^{\circ}C$, and 53mm at $200^{\circ}C$ of the absorber surface temperature, respectively.

  • PDF

KIERDISH II 태양열 집광시스템의 플럭스밀도 분포 (Flux Density Distribution of the Dish Solar Concentrator (KIERDISH II))

  • 강명철;강용혁;유성연
    • 한국태양에너지학회 논문집
    • /
    • 제24권4호
    • /
    • pp.11-18
    • /
    • 2004
  • A solar concentrator, named KIERDISH II, was built at KIER in order to investigate the feasibility of high temperature solar energy application system. The constructed concentrator is a dish type solar concentrator with a focal length of 4.68m and a diameter of 7.9m. To successfully operate KIERDISH II, optimal design of the absorber is very important and flux density distribution has to be known. The focal flux density distribution on the receiver was measured. We have observed the shape and size of flux images and evaluated percent power within radius. Flux density distribution is usually measured by a CCD(charge coupled device) camera and a radiometer. In this paper we present a flux mapping method to estimate the characteristic features of the flux density distribution in the focal region of solar concentrator. The minimum radius of receiver is found to be 0.15m and approximately 90% of the incident radiation is intercepted by receiver aperture.

수치모델을 이용한 고온 태양열 집열기의 열성능 분석 (Characteristic of a Spiral type Receiver for a Dish type solar thermal system using a Numerical model)

  • 김태준;김재익;이진규;이주한;서태범
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.786-791
    • /
    • 2009
  • This study focus on verification of the thermal efficiency of volumetric air receiver with $5kW_{th}$ Dish-type solar thermal system for high temperature uses by using numerical analysis compare with experimental data including shape change of absorber, direction of inlet and outlet. Porous material for radiation-thermal conversion used in former researches are substituted with the stainless steel wall installed along the spiral shaped flow path. Temperature variation and the flow change at the inside of the absorber has been analyzed by Star-ccm+ Version 3.02. Using the numerical model, the heat transfer characteristics of spiral type receiver for dish-type solar thermal systems are known and the thermal performance of the receiver can be estimated.

  • PDF

고온용 태양열 복합 흡수기의 열특성 분석 연구 (A Study on Thermal Characteristics of Hybrid Solar Receiver for Dish Concentrating System)

  • 강명철;김진수;강용혁;김낙주;유성연
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.571-575
    • /
    • 2006
  • To improve economic of solar power generation, stirling engine is required continuous operation and the receiver has to be provided with an additional combustion system. The hybrid receiver with a specially adapted combustion system is possible to 24 hr/day operation by solar and gas-fired. The inner cavity and external wall serve as absorber surfaces using collected irradiation and heat transfer surfaces for the gas heat flow, respectively. The hybrid receiver was designed and fabricated for the dish/stirling system. The analytical method for pridicting natural convective heat loss from receiver is used. The Koenig and Marvin model is used to estimate convection heat loss and heat transfer coefficiency.

  • PDF

집광된 태양열을 반응기에서의 메탄 수증기개질 연구 (Steam Reforming of Methane in a Solar Concentrated Receiver Reactor)

  • 김기만;남우석;한귀영;서태범;강용혁
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.172-175
    • /
    • 2006
  • Steam reforming of methane using Xe-arc solar simulator was studied for converting solar radiation into energy foam that one can readily utilize. The Xe-arc lamp produce a spectrum similar to that of the sun. SiC ceramic foam, resist high temp.$(>900^{\circ}C)$, is used to catalytically active foam absorber, and to support of reforming catalyst. The catalyst on the surface of foam were directly irradiated with solar simulated xe-light in order to carry out the steam reforming of methane. The reactor was made of stainless steel and quartz window was located on a place of the xe-light irradiation and temperature was controlled using K-type thermocouple in contact with catalyst located inside the reactor. The result show that a possibility of solar reforming using catalytically active foam absorber is exist.

  • PDF

An improved 1-D thermal model of parabolic trough receivers: Consideration of pressure drop and kinetic energy loss effects

  • Yassine Demagh
    • Advances in Energy Research
    • /
    • 제8권1호
    • /
    • pp.21-39
    • /
    • 2022
  • In this study, the first law of thermodynamics was used to establish a one-dimensional (1-D) thermal model for parabolic trough receiver (PTR) taking into account the pressure drop and kinetic energy loss effects of the heat transfer fluid (HTF) flowing inside the absorber tube. The validation of the thermal model with data from the SEGS-LS2 solar collector-test showed a good agreement, which is consistent with the previously established models for the conventional straight and smooth (CSS) receiver where the effects of pressure drop and kinetic energy loss were neglected. Based on the developed model and code, a comparative study of the newly designed parabolic trough S-curved receiver versus the CSS receiver was conducted and solar unit's performances were analyzed. Without any supplementary devices, the S-curved receiver enhances the performance of the parabolic trough module, with a maximum of 0.16% compared to CSS receiver with the same sizes and mass flow rates. Thermal losses were reduced by 7% due to the decrease in the temperature of the outer surface of the receiver tube. In addition, it has been shown that from a mass flow rate of 9.5 kg/s the heat losses of the S-curved receiver remain unchanged despite the improvement in the heat transfer rate.

Dish형 태양열 집광시스템 실증연구를 위한 집열성능 특성 분석 (A Characteristic Analysis on the Thermal Performance of the Dish Type Solar Concentrating System)

  • 강명철;강용혁;윤환기;유성연
    • 한국태양에너지학회 논문집
    • /
    • 제26권1호
    • /
    • pp.7-12
    • /
    • 2006
  • The dish type solar thermal concentrating system can collect the solar energy above $800^{\circ}C$. It has a concentration ratio of 800 and total reflector area of $49m^2$. To operate solar receivers at high temperature, the optimum aperture size is obtained from a comparison between maximizing absorbed energy and minimizing thermal losses. The system efficiency is defined as the absorbed energy by working fluid in receiver divided by the energy coming from the concentrator. We find that system efficiency is stable in case of flow rate of above 6lpm. The system efficiency are 64.9% and 65.7% in flow rate of 6lpm and 8lpm, respectively. The thermal performance showed that the maximum efficiency and the factor of thermal loss in flow rate of 8lpm are 68% and 0.0508.

Optical analysis of low concentration evacuated tube solar collector

  • Teles, Mavd R.;Carvalho, Raquel;Ismail, Kamal A.R.
    • Advances in Energy Research
    • /
    • 제5권3호
    • /
    • pp.227-237
    • /
    • 2017
  • The continuous increase of emission rates of green house gases and the effects on global warming added a new dimension to the problem of substituting the petroleum and its derivatives by environment friendly and sustainable energy sources for the world. Solar and wind energy appear at the top of the list of renewable of high potential, widely available, of dominated technology and well accepted. Brazil is one of the few countries in the world that receives number hours of sunshine exceeding 3,000 hours per year with a daily average of 4.5 to 6 kWh. However, this potential is largely unexplored and poorly tapped. The number of renewable systems implanted in Brazil has grown in recent years, but still insignificant when compared, for example, with Germany and Spain among others. This paper presents the results of an optical study on small concentration solar collector with evacuated tube enveloping the absorber and internal reflective surface fixed on the bottom part of the evacuated tube. The designed collector has a 2D geometrical concentration ratio between 2.455 and 4.91. The orientation of the solar collector, the ratio of the radius of the receiver to the radius of the absorber, the incidence angle for each period of the year, the collector inclination angle, the aperture angle of the reflective surface, concentration and optical efficiency were determined. The ray traces and flux distribution on the absorber of the evacuated tube solar collector were determined by using the program Ray Optics Simulation. The optical efficiency varies during the year according to the solar declination. For the periods were the solar declination is close to zero the efficiencies are maximum, and the variation during the day is around 25.88% and 99.9%. For the periods were the solar declination is maximum the efficiencies are minimum, and the variation during the day is around 23.78% and 91.79%.

접시형 태양열 집광 시스템의 에너지 분포 특성에 관한 연구 (A Study on Energy Distributions Produced by Dish Solar Concentrating System)

  • 현성택;강용혁;천원기
    • 설비공학논문집
    • /
    • 제14권11호
    • /
    • pp.907-913
    • /
    • 2002
  • An experimental study on energy density distributions produced by dish solar concentrating system was performed to optimally design and rightly position a cavity receiver. This deemed also very useful to find and correct various errors associated with a concentrator. It is observed that the actual focal length is 2.17 m with a maximum energy density of 1.89 MW/$m^2$. By evaluating the position of flux centroid, it was found that there are errors within 2 cm from the target center. As a result of the percent power within radius, approximately 90% of the incident radiation is intercepted by about 0.06 m radius. The area concentration ratio normalized to 800 W/$m^2$ insolation and 90% mirror reflectivity was 347 suns. The total integrated power of 2467 W was measured under focal flux distributions, which corresponds to the intercept rate of 85.8%.