• Title/Summary/Keyword: sol-gel process

Search Result 860, Processing Time 0.029 seconds

Oxidation of Organic Compounds Using $TiO_2$ Photocatalytic Membrane Reactors ($TiO_2$ 광촉매 막반응기를 이용한 유기물의 산화)

  • 현상훈;심세진;정연규
    • Membrane Journal
    • /
    • v.4 no.3
    • /
    • pp.152-162
    • /
    • 1994
  • The photodegradation efficiency of formic acid on $TiO_2$ photocatalytic membranes was investigated. A new titania membrane reactors for purification of water combining microfiltration with photocatalytic degradation of organic compounds were developed. Titania membrane tubes(average pore size of $0.2\mu m$) were prepared by the slip casting, and porous thin films of $TiO_2$ were formed on the tube surface by the sol-gel process to increase the surface area, and consequently to increase photodegradation efficiency of organic compounds. The UV light with the wavelength of 365 nm was used as a light source for photocatalytic reactions. The photodegradation efficiency of the organic compounds was strongly dependent on the flux of the solution, the microstructure of the membrane (sol pH), and the amount of $O_2$ supplied. The effects of the primary oxidant such as $H_2O_2$ and dopants such as $Nb_2O_5$ on the photodegradation efficiency were also investigated. The results showed that more than 80% of formic acid could be degraded using membrane coated with a $TiO_2$ sol of pH 1.45. The photodegradation efficiency could be improved by about 20% when adding $H_2O_2$ in feed solution or doping $TiO_2$ membranes with $Fe_2O_3$.

  • PDF

The Effect of Acetonitrile on the Texture Properties of Sodium Silicate Based Silica Aerogels (아세토니트릴 첨가가 물유리 기반 실리카 에어로겔의 기공구조에 미치는 영향)

  • Kim, Younghun;Kim, Taehee;Shim, Jong Gil;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.143-148
    • /
    • 2018
  • Sodium silicate based silica aerogels are lower in cost than silica alkoxide based silica aerogels, but the demand is decreasing as their physical properties are lowered. In this research, acetonitrile as a drying control chemical additive (DCCA) is added in the sol state to improve the pore-structural properties of sodium silicate based silica aerogel by preventing the agglomeration of particles and cross-linked bond. The sodium silicate based silica aerogel by ambient pressure drying were prepared by sol-gel process. Acetonitrile/$Na_2SiO_3$ molar ratio of 0, 0.05, 0.1, 0.15, and 0.2 was added to the sol state. The physical properties of the final product were analyzed using Fourier transform infrared, contact angle measurement, Brunauer-Emmett-Teller and Barrett-Joyner-Halenda measurements and field emission scanning electron microscopy. It was confirmed that the sample with adding 0.15 molar ratio of acetonitrile and sodium silicate showed a high specific surface area ($577m^2/g$), a high pore volume (3.29 cc/g), and a high porosity (93%) comparable to the pore-structural properties of silica alkoxide based silica aerogels.

Study for Organic(Bio)-Inorganic Nano-Hybrid OMC

  • Lee, Jung-Eun;Ji, Hong-Geun;Park, Yoon-Chang;Lee, Kyoung-Chul;Yoo, Eun-Ah
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.178-191
    • /
    • 2003
  • OMC is essentialiy necessary compound in sun goods as organic UV protecting products. But the skin-trouble problem is raising because of skin penetration of OMC. In this study, non-capsulated pure OMC was compared with Organic-Inorganic-Nano-hybrid OMC for skin penetration force and SPF degree. Organic- Inorganic Nano-Hybrid OMC is OMC trapped in the pore of the mesoporous silica synthesized by the sol-gel method after OMC is nanoemulsified in the system of the hydrogenated Lecithin/ Ethanol/caprylic/capric triglyceride/OMC/water. OMC- nano- emulsion was obtained by a microfluidizing process at 1000bar and then micelle size in the nanoemulsion solution is 100-200nm range. Mesoporous silica nano-hybrid OMC was prepared by the process; surfactant was added in dissolved OMC-Nanoemulsion, then the rod Micelle was formed. OMC-nanoemulsion was capsulated in this rod Micelle and then silica precursor was added in the OMC-nanoemulsion solution. Through the hydrolysis reaction of the silica precursor, mesoporous silica concluding OMC-Nanocapsulation was obtained. The nano-hybrid surface of this OMC-Nanoemulsion-Inorganic system was treated with polyalkyl-silane compound. OMC-Mesoporous silica Nano-hybrids coated with polyalkyl-silane compound show the higher sun protecting factor (SPF Analyzer: INDEX 10-15) than pure OMC and could reduce a skin penetration of OMC. The physico-chemical properties of these nano-hybrids measured on the SPF index, partical size, strcture, specific surface area, pore size, morphology, UV absorption, rate of the OMC dissolution using SPF Analyzer, Laser light scattering system, XRD, BET, SEM, chroma Meter, HPLC, Image analyzer, microfluidizer, UV/VIS. spectrometer.

  • PDF

Low-temperature crystallized BST thin films by excimer laser annealing for embedded RF tunable capacitor

  • Kang, Min-Gyu;Do, Young-Ho;Oh, Seung-Min;Kang, Chong-Yun;Kim, Sang-Sig;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.28-28
    • /
    • 2010
  • This study realized low-temperature crystallization process of the $Ba_{0.6}Sr_{0.4}TiO_3$ (BST) thin films without thermal damage of substrate using excimer laser annealing (ELA) and structural and electrical characteristics were investigated. The amorphous BST thin films were prepared on Pt/Ti/$SiO_2$/Si substrate by sol-gel method at $250^{\circ}C$. The ELA was carried out using KrF excimer laser which provided excitation wavelength of 248 nm. The beam homogenizing system was used in order to homogenize beam shape of Gaussian fit. The XRD and SEM were used to analyze structural characteristics and the microwave capacitance, dielectric loss and tunability of the BST films were measured by a symmetrical stripline resonator method with shorted end. Consequently, the crystallinity of BST thin films were improved after ELA process and RF tunable capacitor was demonstrated at low temperature below $300^{\circ}C$.

  • PDF

Preparation of LiCoO$_2$from Used Lithium Ion Battery by Hydrometallurgical Processes

  • Lee, Churl-Kyoung;Rhee, Kang-In;Yang, Dong-Hyo;Yu, Hyo-Shin
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.240-244
    • /
    • 2001
  • Recycling process involving mechanical, thermal, hydrometallurgical, and sol-gel step has been applied to recover cobalt and lithium from spent lithium ion batteries and to synthesize LiCoO$_2$from leach liquor as cathodic active materials. Electrode materials containing lithium and cobalt could be concentrated with 2-step thermal and mechanical treatment. Leaching behaviors of the lithium and cobalt in nitric acid media was investigated in terms of reaction variables. Hydrogen peroxide in 1 M HNO$_3$solution turned out to be an effective reducing agent by enhancing the leaching efficiency. O f many possible processes to produce LiCoO$_2$, the amorphous citrate precursor process (ACP) has been applied to synthesize powders with a large specific surface area and an exact stoichiometry. After leaching used LiCoO$_2$with nitric acid, the molar ratio of Li/Co in the leach liquor was adjusted at 1.1 by adding a fresh LiNO$_3$solution. Then, 1 M citric acid solution at a 100% stoichiometry was also added to prepare a gelatinous precursor. When the precursor was calcined at 95$0^{\circ}C$ for 24 hr, purely crystalline LiCoO$_2$was successfully obtained. The particle size and specific surface area of the resulting crystalline powders were 20 пm and 30 $\textrm{cm}^2$/g, respectively The LiCoO$_2$powder was proved to have good characteristics as cathode active materials in charge/discharge capacity and cyclic performance.

  • PDF

Comparison of retention characteristics of ferroelectric capacitors with $Pb(Zr, Ti)O_3$ films deposited by various methods for high-density non-volatile memory.

  • Sangmin Shin;Mirko Hofmann;Lee, Yong-Kyun;Koo, June-Mo;Cho, Choong-Rae;Lee, June-Key;Park, Youngsoo;Lee, Kyu-Mann;Song, Yoon-Jong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.3
    • /
    • pp.132-138
    • /
    • 2003
  • We investigated the polarization retention characteristics of ferroelectric capacitors with $Pb(Zr,Ti)O_3$ (PZT) thin films which were fabricated by different deposition methods. In thermally-accelerated retention tests, PZT films which were prepared by a chemical solution deposition (CSD) method showed rapid decay of retained polarization charges as the thickness of the films decreased down to 100 nm, while the films which were grown by metal organic chemical vapor deposition (MOCVD) retained relatively large non-volatile charges at the corresponding thickness. We concluded that in the CSD-grown films, the thicker interfacial passive layer compared with the MOCVD-grown films had an unfavorable effect on retention behavior. We observed the existence of such interfacial layers by extrapolation of the total capacitance with thickness of the films and the capacitance of these layers was larger in MOCVD-grown films than in CSD-grown films. Due to incomplete compensation of surface polarization charges by the free charges in the metal electrodes, the interfacial field activated the space charges inside the interfacial layers and deposited them at the boundary between the ferroelectric layer and the interfacial layer. Such space charges built up an internal field inside the films, which interfered with domain wall motion, so that retention property at last became degraded. We observed less imprint which was a result of less internal field in MOCVD-grown films while large imprint was observed in CSD-grown films.

Study on Damage Reduction of $(Ba_{0.6}Sr_{0.4})TiO_{3}$ Thin Films in $Ar/CF_{4}$ Plasma ($Ar/CF_{4}$ 유도결합 플라즈마에서 식각된 $(Ba_{0.6}Sr_{0.4})TiO_{3}$ 박막의 손상 감소)

  • Kang, Pil-Seung;Kim, Kyung-Tae;Kim, Dong-Pyo;Kim, Chang-Il;Hwang, Jin-Ho;Kim, Tae-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.171-174
    • /
    • 2002
  • The barium strontium titannate (BST) thin films were etched in $CF_{4}/Ar$ inductively coupled plasma (ICP). The high etch rate obtained at a $CF_{4}(20%)/Ar(80%)$ and the etch rate in pure argon was twice higher than that in pure $CF_{4}$. This indicated that BST etching is sputter dominant process. It is impossible to avoid plasma-induced damages by the energetic particles in the plasma and the nonvolatile etch products. The plasma damages were evaluated in terms of leakage current density, residues on the etched sample, and the changes of roughness. After the BST thin films exposed in the plasma, the leakage current density and roughness increases. In addition, there are appeared a nonvolatile etch byproductsand from the result of X-ray photoelectron spectroscopy (XPS). After annealing at ${600^{\circ}C}$ for 10 min in $O_{2}$ ambient, the increased leakage current density, roughness and nonvolatile etch byproducts reduced. From the this results, the plasma induced damage recovered by annealing process owing to the relaxation of lattice mismatches by Ar ions and the desorption of metal fluorides in high temperature.

  • PDF

Recent Development of 5 V Cathode Materials for Lithium Rechargeable Batteries

  • Kim Hyun-Soo;Periasamy Padikkasu;Moon Seong-In
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • This paper deals with the recent development of high-voltage cathode materials of mono- and di- metal ions substituted spinel $LiMn_2O_4$ for lithium batteries. $LiCu_xMn_{2-x}O_4(0{\leq}x{\leq}0.5)$ shows reversible intercalation/deintercalation in two potential regions, $3.9\~43\;and\;4.8-5.0V$ and stable electrochemical cycling behavior but with low capacity. $LiNi_{0.5}Mn_{1.5}O_4$ obtained by a sol-gel process delivers a capacity of 127mAh $g^{-1}$ on the first cycle and sustains a value of 124 mAh $g^{-1}$ even after the 60th cycle. The $Li_xCr_yMn_{2-y}O_4(0{\leq}x{\leq}0.5)$ solid-solutions exhibit enhanced specific capacity, larger average voltage, and improved cycling behaviors for low Cr content. $LiCr_yMn_{2-y}O_4$ presents a reversible Li deintercalation process at 4.9V, whose capacity is proportional to the Cr content in the range of $0.25{\leq}x{\leq}0.5$ and delivers higher capacities. $LiM_yCr_{0.5-y}Mn_{1.5}O_4(M=Fe\;or\;Al)$ shows that the capacity retention is lowered compared with lithium manganate. The cumulative capacities obtainable with Al-substitutted materials are less than those with Fe-substituted materials. $LiCr_xNi_{0.5-x}Mn_{1.5}O_4(x=0.1)$ delivers a high initial capacity of 1$152mAh\;g^{-1}$ with excellent cycleability.

Fabrication and Characterization of Alumina/Silver Nanocomposites

  • Cheon, Seung-Ho;Han, In-Sub;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.343-348
    • /
    • 2007
  • Alumina/silver nanocomposites were fabricated using a soaking method through a sol-gel route to construct an intra-type nanostructure. The pulse electric-current sintering (PECS) technique was used to sinter the nanocomposites. Several specimens were annealed after sintering. The microstructure, mechanical properties, critical frontal process zone (FPZ) size, and thermo-mechanical properties of the nanocomposites were estimated. The relative densities of the specimens sintered at 1350 and $1450^{\circ}C$ were 95% and 99%, respectively. The maximum value of the three-point bending strength was found to be 780 MPa for the $2{\times}2{\times}10 mm$ specimen sintered at $1350^{\circ}C$. The fracture toughness of the specimen sintered at $1350^{\circ}C$ was measured to be $3.60 MPa{\cdot}m^{1/2}$ using the single-edge V-notched beam (SEVNB) technique. The fracture mode of the nanocomposites was transgranular, in contrast to the intergranular mode of monolithic alumina. The fracture morphology suggested that dislocations were generated around the silver nanoparticles dispersed within the alumina matrix. The specimens sintered at $1350^{\circ}C$ were annealed at $800^{\circ}C$ for 5 min, following which the maximum fracture strength became 810 MPa and the fracture toughness improved to $4.21 MPam^{1/2}$. The critical FPZ size was the largest for the specimen annealed at $800^{\circ}C$ for 5 min. Thermal conductivity of the alumina/silver nanocomposites sintered at $1350^{\circ}C$ was 38 W/mK at room temperature, which was higher than the value obtained with the law of mixture.

A Simple, Rapid, and Automatic Centrifugal Microfluidic System for Influenza A H1N1 Viral RNA Purification

  • Park, Byung Hyun;Jung, Jae Hwan;Oh, Seung Jun;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.277.1-277.1
    • /
    • 2013
  • Molecular diagnostics consists of three processes, which are a sample pretreatment, a nucleic acid amplification, and an amplicon detection. Among three components, sample pretreatment is an important process in that it can increase the limit of detection by purifying nucleic acid in biological sample from contaminants that may interfere with the downstream genetic analysis such as nucleic acid amplification and detection. To achieve point-of-care virus detection system, the sample pretreatment process needs to be simple, rapid, and automatic. However, the commercial RNA extraction kits such as Rneasy (Qiagen) or MagnaPure (Roche) kit are highly labor-intensive and time-consuming due to numerous manual steps, and so it is not adequate for the on-site sample preparation. Herein, we have developed a rotary microfluidic system to extract and purify the RNA without necessity of external mechanical syringe pumps to allow flow control using microfluidic technology. We designed three reservoirs for sample, washing buffer, and elution buffer which were connected with different dimensional microfluidic channels. By controlling RPM, we could dispense a RNA sample solution, a washing buffer, and an elution buffer successively, so that the RNA was captured in the sol-gel solid phase, purified, and eluted in the downstream. Such a novel rotary sample preparation system eliminates some complicated hardwares and human intervention providing the opportunity to construct a fully integrated genetic analysis microsystem.

  • PDF