• Title/Summary/Keyword: sol gel

Search Result 2,540, Processing Time 0.028 seconds

Fabrication of Discontinuous Al2O3-Dispersed TZP Fibers by a Sol-Gel Method (졸-겔법을 이용한 Al2O3가 분산된 TZP 단섬유의 제조)

  • Sim, Soo-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.1
    • /
    • pp.56-60
    • /
    • 2015
  • Discontinuous, polycrystalline $Al_2O_3$-dispersed TZP fibers were prepared by the centrifugal spinning of a colloidal $ZrO_2$ sol containing Y and Al nitrates and poly(vinyl alcohol). Factors affecting the rheological properties of the sols, such as sol concentrations, aging, and the amounts and types of additives, were investigated by measuring the shear viscosities. The flow characteristics of the sols were studied in relation to the spinnability by measuring the viscosity with respect to the shear rate. The spinnability was obtained through the addition of a polymer which increases the viscosity to a range of optimum viscosity values for spinning. Aging the sols containing the additives did not noticeably change the sol viscosities at room temperature up to 30 days. The flow behavior of the spinnable sols progressively changed from nearly Newtonian to pseudoplastic with an increase in the sol concentration.

Properties of Te Fine Particle Doped SiO2 Gel by the Sol-Gel Method (졸-겔법에 의한 Te 미립자분산 SiO2 겔의 특성)

  • Mun, Shong-Soo;Jo, Bum-Rae;Kang, Bong-Sang
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.650-655
    • /
    • 2002
  • $SiO_2$ gels containing dispersed fine Te metal particles have been prepared by the sol- gel method using a starting solution containing Tetraethoxy Silane (Si($OC_2$ $H_{5}$ )$_4$), $H_2$O, Ethylalchol ($C_2$$H_{5}$OH), Nitric Acid ($HNO_3$) and Tellurium Tetracholoride ($TeCl_4$) in a several molar ratio. Gelling time of sols was about 3 days and viscosity of solution was very low about 2~3 cP for 3 days. Heat-treatments of the gel have been performed at 500, 700, 900, 1100 and $1300^{\circ}C$ for 1 hour, respectively. We have investigated TG-DTA, X-ray diffraction patterns and SEM of heat-treatmented gels. The size of Te fine particles dispersed in $SiO_2$ gel was about 0.8~1 $\mu\textrm{m}$ and the shape was almost quadrangle.

Synthesis of ZrO2 Gel Dispersed with Au Fine Particles by Sol-Gel Method (졸-겔법에 의한 Au 미립자 분산 ZrO2 겔의 합성)

  • Mun, Chong-Soo;Lee, Seung-Min
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.219-223
    • /
    • 2003
  • Zirconia gels dispersed with fine Au particles have been prepared by the sol-gel method. Starting solution with (OC$Zr_4$$H_{ 9}$)$_4$, $C_4$ $H_{9}$ OH, $H_2$O,$ HNO_3$, $HAuC1_4$ was used to prepare gels in several molar ratio. After hydrolysis, viscosity of solutions as 4∼5 cP and gelling time of sols were spent about 9 days. As the heat-treatment temperature was increased,$ ZrO_2$ had the phase transition from tetragonal to monoclinic at $750^{\circ}C$. Heat-treatments of the gel have performed at 500, 700, 750, 800, 1000 and $1100^{\circ}C$ for 3 hrs, respectively. We have investigated TG-DTA, X-ray diffraction patterns, SEM and EDS. The size of Au fine particles dispersed in the heat-treatmented gel was about 0.15∼0.23 $\mu\textrm{m}$ and the shape was most sphericity.

Preparation of ZnO@TiO2 nano coreshell structure by the polymerized complex and sol-gel method (착체중합법과 sol-gel법에 의한 ZnO@TiO2 나노 코아쉘 구조의 제조)

  • Lim, Chang Sung
    • Analytical Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.237-243
    • /
    • 2008
  • Nano core shell structures of $TiO_2$ particles coated on surface of ZnO nanoparticles were prepared by the polymerized complex and sol-gel method. The average particle size of ZnO by the polymerized complex method showed 100 nm and the average particle size of $TiO_2$ by the sol-gel method showed below 10 nm. The average particle size of $ZnO@TiO_2$ nano core shell struture represented about 150 nm. The agglomeration between the ZnO particles using the polymerized complex method was highly controlled by the uniform absorption of $TiO_2$ colloid on the spherical ZnO surfaces. The driving force of heterogeneous bonding between ZnO and $TiO_2$ was induced by the Coulomb force. The ZnO and $TiO_2$ particles electrified with + and - charges, respectively, resulted in strong bonding by the difference of iso-electric point (IEP) when they laid neutrality pH area, depending on the heterogeneous surface electron electrified by the different zeta potential on the pH values.

Preparation of TiO2-SiO2 Organic-Inorganic Hybrid Coating Material by Sol-gel Method and Evaluation of Corrosion Characteristics (졸-겔법에 의한 유·무기 TiO2-SiO2 혼성(Hybrid)코팅재료의 제조 및 부식 특성 평가)

  • Noh, J.J.;Maeng, W.Y.
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.64-75
    • /
    • 2015
  • Single $TiO_2$ coating prepared by sol-gel process usually experiences cracks in coating layer. In order to prevent cracks, an inorganic-organic hybrid $TiO_2-SiO_2$ coating was synthesized by combining precursors with an organic functional group. Five different coatings with various ratios of (1:8, 1:4, 1:1, 1:0.25 and 1:0.125) titanium alkoxide (TBOT, Tetrabutylorthotitanate) to organo-alkoxysilane (MAPTS, ${\gamma}$-Methacryloxy propyltrimethoxysilane) on carbon steel substrate were made by sol-gel dip coating. The prepared coatings were analyzed to study the coating properties (surface crack, thickness, composition) by scanning electron microscope (SEM), focused ion beam (FIB), and Fourier transform infrared spectroscopy (FT-IR). Potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) were also performed to evaluate the corrosion characteristics of the coatings. Crack free $TiO_2-SiO_2$ hybrid coatings were prepared with the optimization of the ratio of TBOT to MAPTS. The corrosion rates were significantly decreased in the coatings for the optimized precursor ratio without cracks.

Characterization of Sol-Gel Derived Antimony-doped Tin Oxide Thin Films for Transparent Conductive Oxide Application

  • Woo, Dong-Chan;Koo, Chang-Young;Ma, Hong-Chan;Lee, Hee-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.241-244
    • /
    • 2012
  • Antimony doped tin oxide (ATO) thin films on glass substrate were prepared by the chemical solution deposition (CSD) method, using sol-gel solution synthesized by non-alkoxide precursors and the sol-gel route. The crystallinity and electrical properties of ATO thin films were investigated as a function of the annealing condition (both annealing environments and temperatures), and antimony (Sb) doping concentration. Electrical resistivity, carrier concentration, Hall mobility and optical transmittance of ATO thin films were improved by Sb doping up to 5~8 mol% and annealing in a low vacuum atmosphere, compared to the undoped tin oxide counterpart. 5 mol% Sb doped ATO film annealed at $550^{\circ}C$ in a low vacuum atmosphere showed the highest electrical properties, with electrical resistivity of about $8{\sim}10{\times}10^{-3}{\Omega}{\cdot}cm$, and optical transmittance of ~85% in the visible range. Our research demonstrates the feasibility of low-cost solution-processed transparent conductive oxide thin films, by controlling the appropriate doping concentration and annealing conditions.

Synthesis of Nanocrystalline TiO2 by Sol-Gel Combustion Hybrid Method and Its Application to Dye Solar Cells

  • Han, Chi-Hwan;Lee, Hak-Soo;Han, Sang-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1495-1498
    • /
    • 2008
  • $TiO_2$ nanopowders were synthesized by new sol-gel combustion hybrid method using acetylene black as a fuel. The dried gels exhibited autocatalytic combustion behaviour. $TiO_2$ nanopowders with an anatase structure and a narrow size distribution were obtained at 400-600 ${^{\circ}C}$. Their crystal structures were examined by powder Xray diffraction (XRD) and their morphology and crystal size were investigated by scanning electron microscopy (SEM). The crystal size of the nanopowders was found to be in the range of 15-20 nm. $TiO_2$ powders synthesized at 500 ${^{\circ}C}$ and 600 ${^{\circ}C}$ were applied to a dye solar cell. An efficiency of 5.2% for the conversion of solar energy to electricity ($J_{sc}$ = 11.79 mA/$cm^2$, $V_{oc}$ = 0.73 V, and FF = 0.58) was obtained for an AM 1.5 irradiation (100 mW/$cm^2$) using the $TiO_2$ nanopowder synthesized by the sol-gel combustion hybrid method at 500 ${^{\circ}C}$.