• Title/Summary/Keyword: soils

Search Result 6,594, Processing Time 0.034 seconds

Characteristics of Phosphorus Adsorption of Acidic, Calcareous, and Plastic Film House Soils

  • Kim, Myung-Sook;Park, Seong-Jin;Lee, Chang-Hoon;Yun, Sun-Gang;Ko, Byong-Gu;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.789-794
    • /
    • 2016
  • Continuous excessive application of phosphorus (P) fertilizer and manure in plastic film house soils can lead to an accumulation of P in soils. The understanding of P sorption by soils is important for fertilizer management. In this study, 9 samples were collected for acidic and calcareous soils as non-cultivated soil and plastic film house soils as cultivated soil Phosphorus sorption data of acidic soils fit the Langmuir equations, Freundlich equations in calcareous and plastic film house soils. In calcareous and plastic film house soils, the slope of isotherm adsorption changed abruptly, which could be caused P precipitation with $CaCO_3$. The calculated Langmuir adsorption maximum ($S_{max}$) varied from 217 to 1,250, 139 to 1,429, and $714mg\;kg^{-1}$ for acidic soils, calcareous soils, and plastic film house soils with low available phosphate concentration, respectively. From this result, maximum P adsorption by the Langmuir equation could be regarded as threshold of P concentration to induce the phosphate precipitation in soil. Phosphate-sorption values estimated from one-point isotherm for acidic and calcareous soils as non-cultivated soils were comparable with the $S_{max}$ values calculated from the Langmuir isotherm.

Effect of Different Nursery Soils and Seeding Amounts on Seedling Growth of Rice (벼 기계이앙시 상토종류와 파종량이 묘생육에 미치는 영향)

  • Kim, Wang Kyung;Sohn, Jae Keun
    • Current Research on Agriculture and Life Sciences
    • /
    • v.19
    • /
    • pp.1-8
    • /
    • 2001
  • This experiment was conducted to determine the effect of nursery soils and seeding density on seedling growth characteristics in automatic facility for raising of rice seedlings. The seedling characteristics were evaluated for the 10-day and 15-day old seedlings grown in six different nursery soils including farm-made soils. Two levels of seeding amount, 250 g and 300 g/tray ($60{\times}30{\times}2.5$ cm), were applied to compare the seedling characteristics according to seeding density on different nursery soils. There were wide difference in soil components among the nursery soils tested. In acidity of nursery soils, 'Bunoog 2' was the highest, pH 5.1, and 'Samkyung' was the lowest, pH 8.6. The content of available phosphate was the highest value, 843 ppm, in 'Bunong 1' and the lowest (74 ppm) in farm-made soils. The total nitrogen content of 'Bunong 1, 2, 3' and 'Weonjo' soils was higher than there of 'Samkyung' and farm-made soils. There was no difference in plant height among three types of 'Bunong' soils (Bunong 1, 2, 3), but the seedling height grown in farm-made soils was shorter than there in other nursery soils. The plant heigh was slightly taller as the increase of seeding amount from 250 g to 300 g/tray, and the difference in plant height was larger in 15-day old seedlings as compared with 10-day old seedlings. Dry weight of seedlings grown for 15 days in three 'Bunong' soils was heavier than those in other nursery soils. Based on the growing characteristics of seedlings grown in different nursery soils, the heat result was obtained from a nursery soil, 'Bunoog 2', among six marketing nursery soils tested.

  • PDF

Changes of Saturated Hydraulic Conductivity of Bed-soils Mixed with Organic and Inorganic Materials

  • Lee, Jeong-Eun;Kim, Yong;Yun, Seok-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.1
    • /
    • pp.66-70
    • /
    • 2014
  • Bed-soils can be used to help plants to overcome unfavorable conditions of soils, especially hydraulic properties of soils. This study was conducted to evaluate the effect of organic and inorganic raw materials on saturated hydraulic conductivity ($K_s$) of bed-soils. Perlite and bottom ash, which are inorganic materials, increased more $K_s$ of bed-soils than coco peat, an organic material. However, vermiculite, an inorganic material, increased less than coco peat. Saturated hydraulic conductivity of bed-soil mixed with fine vermiculite ($0.14{\pm}0.02mh^{-1}$) was much lower than one containing coarse vermiculite ($0.85{\pm}0.21mh^{-1}$). Such effect was more apparent when pressure was added on bed-soils containing fine vermiculite ($0.07{\pm}0.01mh^{-1}$), probably reflecting the decrease in pore size with the expansion of vermiculite wetted. Compacting decreased more $K_s$ in the bed-soils containing coco peat or vermiculite than other mixtures. Those results suggest that perlite and bottom ash in bed-soils play an important role in improving saturated hydraulic conductivity but vermiculite in bed-soils may suppress the improvement of saturated hydraulic conductivity with the decrease of its size and with the increase of compacting pressure.

폐광산지역 경작지 토양의 중금속 존재형태와 토양오염평가

  • 김휘중;양재의;전상호
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.149-155
    • /
    • 2003
  • Objectives of this research were to fractionate heavy metals in soil samples in the upper Okdong River basin and to assess the potential pollution index of each metal fraction. Soil samples were collected from cultivated land soils and analyzed for physical and chemical properties. pH of cultivated soils ranged from 5.2 to 7.6. Contents of total kelhaldal nitrogen and loss on ignition were in the ranges of 0.6∼2.5%, and 1.9∼12.9%, respectively. Heavy metals in the cultivated land soils were higher in the abandoned closed coal mine near field soils than those in the paddy soils. Total concentrations of metals in the cultivated land soils were in the orders of Zn > Pb > Ni > Cu > Cd, exceed the corrective action level of the Soil Environment Conservation Law and higher than the naturals were abundance levels reported from uncontaminated cultivated land soils. Mobile fractions of metals were relatively small compared to the total concentrations. Soil Pollution Assesment Index(SPAI) values of each fraction of metals were leveled from Non polluted to Moderately polluted based on total concentrations. SPAI values of mobil fractions were lower than those of immobile fractions. Results on metal fractions and SPAI values of the cultivated land soils indicate that field soils samples were contaminated with heavy metals and had potential to cause a detrimental effects on plants. A prompt countermeasure to prevent field soils in the abandoned closed coal mine near fields are urgently needed.

  • PDF

Unsaturated shear strength characteristics of Nak-dong River silty-sand (낙동강 실트질 모래의 불포화 전단강도특성)

  • Cha, Bong-Geun;Kim, Young-Su;Park, Sung-Sik;Shin, Ji-Seop
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.53-60
    • /
    • 2010
  • The natural soils are classified in saturated soils and unsaturated soils according to level of ground water but the research for only saturated soils has been conducted by this time. However, there are many proble.ms which are not solved by using the concept and principle of saturated soils on the natural soils. In fact, it is known that unsaturated soils represent the behavior characteristic unlike completely saturated soils because of the adhesion under the influence of negative pore water pressure, the high angle of friction and the low water permeability by the air entry. So it needs to conduct the various researches on insufficient unsaturated soils. In this paper, unsaturated triaxial compressive tests are conducted in order to do research on shear strength characteristic on sands and silty sands of Nakdong river. As a result of the tests, the cohesion is increased in non-linear type according to the change of the matric suction, but the angle of internal friction is not changed much.

  • PDF

Soil Organic Carbon Dynamics in Korean Paddy Soils (우리나라 논 토양의 토양유기탄소 변동 특성)

  • Jung, Won-Kyo;Kim, Sun-Kwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.36-42
    • /
    • 2007
  • Korean paddy soils have long been almost uniformly managed throughout the whole country with flooded, deep tillage, puddlling, transplanting, and uncovering after harvest. Management of soil organic carbon could be more important in the sources of green house gases. However, soil organic carbon dynamics were not been studied for Korean paddy soils. Therefore, we evaluated the changes in soil organic carbon (SOC) of paddy soils between 1999 and 2003 at the same locations nationwide except islands. Soil organic carbon tends to increase in Inceptisols, which is predominant soil order for Korean paddy soils, from 1999 to 2003. Soil organic carbon increases in topographically plain paddy soils was greater than in valley soils, and was considerably high in predominant types of paddy soils (i.e., well adapted paddy soils, sandy paddy soils, and poorly drained paddy soils) but low and stable in the saline paddy soils. We also found that clay paddy soils are greater in soil organic carbon than sandy paddy soils. Through this study, we concluded that a proper management of paddy soils could contribute to soil organic carbon storage, which imply that the Korean paddy soils could help to enhance carbon dioxide sequestration via soil organic matter into the soil.

Physicochemical Characteristics of Dredged Soils in Reservoirs (저수지 준설대상 토양의 이화학적 특성)

  • 손재권;구자웅;최진규
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.3
    • /
    • pp.96-107
    • /
    • 1997
  • This study was carried out to examine the physicochemical characteristics of dredged soils in reservoirs. Surveys and analyses of basic materials were made on 241 of 2,328 reservoirs in Chonbuk province through 2 years from December 1994 to November 1996. The results of this study are summarized as follows : 1. Soils were classified as 15 types according to physical properties, and some soils contain comparatively high percentage of sand and gravel. Considering only soil textures, useful and economical soils as aggregate are approximately 25% in all, and the other soils are arable for farm planting. 2. The results of chemical analyses of soils showed on the average 5.9 in pH, 1.lmmhos/cm in ECe, 14.6me/l00g in CEC, 460.0ppm in T-N, 119.0ppm in T-P, 264.9ppm in K, 134.2ppm in Na, l,335.0ppm in Ca, 575.9ppm in Mg, 486.Sppm in Fe, 57.7ppm in Mn, 3.3ppm in Cu, 21.9ppm in Zn, 0.49ppm in As, 0.34ppm in Cd, 0.O3ppm in Hg, 1.7% in OM, respectively. 3. General chemical components, heavy metals, organic matter contents were analyzed as similar to tlie mean values of common soils, therefore it was considered to be no significant effects on crop growth in the chemical properties. 4. Accodingly, the physicochemical characteristics of soils ought to be analyzed accurately before dredging for effective using of dredged soils. And it will be more effective, if the dredged soils are used with proper balance among each content of components with considering to the physicochemical properties of common soils.

  • PDF

Yield Potentials of Rice and Soybean As Affected by Cropping Systems in Mid-mountainous Paddy Soils of Korea

  • Kang, Ui-Gum;Choi, Jong-Seo;Kim, Jeong-Ju;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.4
    • /
    • pp.259-274
    • /
    • 2017
  • To get some informations for sustainable paddy use, the productivities of soils with two years of cropping systems were estimated through pot experiment using two pretreated groups of not autoclaved 'natural'- and 'autoclaved'-soils without any fertilization. And then the relationship between the productivities, called yield potentials, and the characteristics of soils as affected by cropping systems, such as rice-rice (R-R), ricebarley-rice-barley (R-B-R-B), rice-barley-rice-wheat (R-B-R-W), soybean-barley-soybean-barley (S-B-S-B), of which barley and wheat were composted at a level of $10MT\;ha^{-1}$, and S-B-S-B without compost, was analyzed. These treatments were established in mid-mountainous loam paddy, which contained exchangeable Ca of $11.8cmol_c\;kg^{-1}$, located at the altitude of 285 m above sea level in Sangju of Korea. Crops for the estimation of soil productivity were rice cv. 'Seolemi' and soybean cv. 'Chamol'. As a result, under the natural soils condition, rice grain and straw were highly produced in composted S-B-S-B soils (p < 0.05) and lowly in R-R soils (p < 0.05). While soybean grain and stem were higher in R-R soils (p < 0.05) than other soils which not significantly different each other. In case of autoclaved soils, the yield potentials of rice and soybean were high together in either composted R-B-R-B/W or S-B-S-B soils compared to R-R and uncomposted S-B-S-B soils (p < 0.05). In especial, these yield potentials under the natural soils condition were commonly influenced by soil porosity showing negative correlation for rice (p < 0.01); positive for soybean (p < 0.05). And the porosity possibly reversed even the symbiotic contribution of indigenous Bradyrhizobium japonicum for soybean. Under autoclaved soils condition the potentials of rice and soybean showed negative correlations with soil C:N ratio (p < 0.05) similarly to the case of rice in the natural soils.

Soil Characteristics and Improvement of Reclaimable Hillside Land (산지토양(山地土壤)의 특성(特性)과 개량(改良))

  • Ryu, In-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.4
    • /
    • pp.247-262
    • /
    • 1979
  • Majority of reclaimable soils in hillside lands in Korea are red yellow soils, with exception in Jeju island, where most of reclaimable hillside lands are composed of volcanic ash soils. Songjeong, Yesan and Samgag series are the major soil series of red yellow soils which are available for the reclamation. When observed in the fields, they are distinguished as reddish brown clay loam, red yellow sand loam and yellowish brown sand loam. They have moderately good physical properties but their chemical properties are generally poor for crop cultivations. The chemical properties of red yellow soils, as compared to long time cultivated (matured) soils, are characterized by very low pH, high in exchangeable Al content and phosphorus fixation capacity. Also extraodinary low available phosphorus and organic matter contents are generally observed. On the other, the chemical properties of volcanic ash soils are characterized by high armophous Fe and Al hydroxides and organic matter contents, which are the causative factors for the extremely high phosphorus fixation capacity of the soils. The phosphorus fixation capacity of volcanic acid soils are as high as 5-10 times of that of red yellow soils. Poor growth of crops on newly reclaimed red yellow soils are mainly caused by very low available P and pH and high exchangeable Al. Relatively high P fixation capacity renders the failure of effective use of applied P when the amount of application is not sufficient. Applications of lime to remove the exchangeable Al and relatively large quantity of P to lower the P fixation capacity and to increase the available P are the major recommendations for the increased crop production on red yellow hillside soils. Generally recommendable amounts of lime and P to meet the aforementioned requirements, are 200-250kg/10a of lime and $30-35kg\;P_2O_5/10a$. Over doses of lime. frequently induces the K, B, arid Zn deficiencies and lowers the uptake of P. In volcanic ash soils, it is difficult to alter the exchangeable Al and the P fixation capacity by liming and P application. This may be due to the peculiarity of volcanic ash soil in chemical properties. Because of this feature, the amelioration of volcanic ash soils is not as easy as in the case of red yellow soils. Application of P as high as $100kg\;P_2O_5/10a$ is needed to bring forth the significant yield response in barley. Combined applications of appropriate levels of P, lime, and organic matter, accompanied by deep plowing, results in around doubling of the yields of various crops on newly reclaimed red yellow soils.

  • PDF